SEARCH

SEARCH BY CITATION

References

  • Abramov AY, Scorziello A & Duchen MR (2007). Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27, 11291138.
  • Andrade FH, Reid MB, Allen DG & Westerblad H (1998). Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol 509, 565575.
  • Apostol S, Ursu D & Melzer W (2007). Local calcium release and changes in T-system volume during osmotic challenges of mammalian skeletal muscle. 2007 Biophysical Society Meeting Abstracts. Biophys J (Suppl.), 79a, 368-Pos.
  • Aracena P, Tang W, Hamilton SL & Hidalgo C (2005). Effects of S-glutathionylation and S-nitrosylation on calmodulin binding to triads and FKBP12 binding to type 1 calcium release channels. Antioxid Redox Signal 7, 870881.
  • Bedard K & Krause KH (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87, 245313.
  • Bejma J & Ji LL (1999). Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 87, 465470.
  • Berridge MJ (1997). Elementary and global aspects of calcium signalling. J Physiol 499, 291306.
  • Brown LD, Rodney GG, Hernandez-Ochoa E, Ward CW & Schneider MF (2007). Ca2+ sparks and T tubule reorganization in dedifferentiating adult mouse skeletal muscle fibers. Am J Physiol Cell Physiol 292, C1156C1166.
  • Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S & Shah AM (2006). NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8, 691728.
  • Chawla S, Skepper JN, Hockaday AR & Huang CL (2001). Calcium waves induced by hypertonic solutions in intact frog skeletal muscle fibres. J Physiol 536, 351359.
  • Cheng H, Lederer WJ & Cannell MB (1993). Calcium sparks: elementary events underlying excitation–contraction coupling in heart muscle. Science 262, 740744.
  • Chun LG, Ward CW & Schneider MF (2003). Ca2+ sparks are initiated by Ca2+ entry in embryonic mouse skeletal muscle and decrease in frequency postnatally. Am J Physiol Cell Physiol 285, C686C697.
  • Clanton TL, Zuo L & Klawitter P (1999). Oxidants and skeletal muscle function: physiologic and pathophysiologic implications. Proc Soc Exp Biol Med 222, 253262.
  • Conklin MW, Ahern CA, Vallejo P, Sorrentino V, Takeshima H & Coronado R (2000). Comparison of Ca2+ sparks produced independently by two ryanodine receptor isoforms (type 1 or type 3). Biophys J 78, 17771785.
  • Csernoch L, Zhou J, Stern MD, Brum G & Rios E (2004). The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle. J Physiol 557, 4358.
  • Espinosa A, Leiva A, Pena M, Muller M, Debandi A, Hidalgo C, Carrasco MA & Jaimovich E (2006). Myotube depolarization generates reactive oxygen species through NAD(P)H oxidase; ROS-elicited Ca2+ stimulates ERK, CREB, early genes. J Cell Physiol 209, 379388.
  • Feng W, Liu G, Allen PD & Pessah IN (2000). Transmembrane redox sensor of ryanodine receptor complex. J Biol Chem 275, 3590235907.
  • Geiszt M (2006). NADPH oxidases: new kids on the block. Cardiovasc Res 71, 289299.
  • Ghosh M, Wang HD & McNeill JR (2002). Tiron exerts effects unrelated to its role as a scavenger of superoxide anion: effects on calcium binding and vascular responses. Can J Physiol Pharmacol 80, 755760.
  • Hidalgo C, Sanchez G, Barrientos G & Aracena-Parks P (2006). A transverse tubule NADPH oxidase activity stimulates calcium release from isolated triads via ryanodine receptor type 1 S-glutathionylation. J Biol Chem 281, 2647326482.
  • Hwang J, Saha A, Boo YC, Sorescu GP, McNally JS, Holland SM, Dikalov S, Giddens DP, Griendling KK, Harrison DG & Jo H (2003). Oscillatory shear stress stimulates endothelial production of O2 from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion. J Biol Chem 278, 4729147298.
  • Isaeva EV & Shirokova N (2003). Metabolic regulation of Ca2+ release in permeabilized mammalian skeletal muscle fibres. J Physiol 547, 453462.
  • Isaeva EV, Shkryl VM & Shirokova N (2005). Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle. J Physiol 565, 855872.
  • Javesghani D, Hussain SN, Scheidel J, Quinn MT & Magder SA (2003). Superoxide production in the vasculature of lipopolysaccharide-treated rats and pigs. Shock 19, 486493.
  • Kirsch WG, Uttenweiler D & Fink RH (2001). Spark- and ember-like elementary Ca2+ release events in skinned fibres of adult mammalian skeletal muscle. J Physiol 537, 379389.
  • Lamb GD (2002). Voltage-sensor control of Ca2+ release in skeletal muscle: insights from skinned fibers. Front Biosci 7, d834842.
  • Marengo JJ, Hidalgo C & Bull R (1998). Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells. Biophys J 74, 12631277.
  • Mukhopadhyay P, Rajesh M, Yoshihiro K, Hasko G & Pacher P (2007). Simple quantitative detection of mitochondrial superoxide production in live cells. Biochem Biophys Res Commun 358, 203208.
  • Pacher P, Beckman JS & Liaudet L (2007). Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87, 315424.
  • Pattwell DM & Jackson MJ (2004). Contraction-induced oxidants as mediators of adaptation and damage in skeletal muscle. Exerc Sport Sci Rev 32, 1418.
  • Posterino GS, Cellini MA & Lamb GD (2003). Effects of oxidation and cytosolic redox conditions on excitation–contraction coupling in rat skeletal muscle. J Physiol 547, 807823.
  • Reid MB (2001). Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc 33, 371376.
  • Reinehr R, Gorg B, Becker S, Qvartskhava N, Bidmon HJ, Selbach O, Haas HL, Schliess F & Haussinger D (2007). Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices. Glia 55, 758771.
  • Rios E, Ma JJ & Gonzalez A (1991). The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle. J Muscle Res Cell Motil 12, 127135.
  • Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP & Beckman JS (2006). Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 103, 1503815043.
  • Shirokova N, Garcia J, Pizarro G & Rios E (1996). Ca2+ release from the sarcoplasmic reticulum compared in amphibian and mammalian skeletal muscle. J Gen Physiol 107, 118.
  • Shirokova N, Garcia J & Rios E (1998). Local calcium release in mammalian skeletal muscle. J Physiol 512, 377384.
  • Shirokova N, Shirokov R, Rossi D, Gonzalez A, Kirsch WG, Garcia J, Sorrentino V & Rios E (1999). Spatially segregated control of Ca2+ release in developing skeletal muscle of mice. J Physiol 521, 483495.
  • Stamler JS & Meissner G (2001). Physiology of nitric oxide in skeletal muscle. Physiol Rev 81, 209237.
  • Sun J, Xu L, Eu JP, Stamler JS & Meissner G (2001). Classes of thiols that influence the activity of the skeletal muscle calcium release channel. J Biol Chem 276, 1562515630.
  • Trimm JL, Salama G & Abramson JJ (1986). Sulfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesicles. J Biol Chem 261, 1609216098.
  • Wang GJ & Thayer SA (2002). NMDA-induced calcium loads recycle across the mitochondrial inner membrane of hippocampal neurons in culture. J Neurophysiol 87, 740749.
  • Wang X, Weisleder N, Collet C, Zhou J, Chu Y, Hirata Y, Zhao X, Pan Z, Brotto M, Cheng H & Ma J (2005). Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol 7, 525530.
  • Waring P (2005). Redox active calcium ion channels and cell death. Arch Biochem Biophys 434, 3342.
  • Weisleder N, Brotto M, Komazaki S, Pan Z, Zhao X, Nosek T, Parness J, Takeshima H & Ma J (2006). Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release. J Cell Biol 174, 639645.
  • Zhou J, Yi J, Royer L, Launikonis BS, Gonzalez A, Garcia J & Rios E (2006). A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle. Am J Physiol Cell Physiol 290, C539C553.