Activation of neurons in the dorsomedial hypothalamus (DMH) evokes increases in mean arterial pressure (MAP), sympathetic activity, heart rate (HR) and respiratory activity. Results of previous studies suggest that the DMH-evoked increases in MAP and HR are mediated by neurons within the periaqueductal grey (PAG), but a recent study has proposed that the converse is also true, i.e. that increases in MAP and HR evoked from the PAG depend upon neuronal activity in the DMH. In this study in anaesthetized rats, we examined the functional relationship between the DMH and PAG in regulating renal sympathetic nerve activity (RSNA) and respiratory activity (determined by measuring phrenic nerve activity (PNA)). Bilateral microinjections of the neuronal inhibitor muscimol into the DMH virtually abolished the increases in MAP, RSNA and PNA burst rate and amplitude evoked from the dorsolateral (dl) PAG. In contrast, multiple bilateral injections of much larger (10 times) doses of muscimol or of the local anaesthetic lignocaine into sites in the dlPAG at three different rostrocaudal levels did not reduce the magnitude or duration of the sympathetic vasomotor and respiratory responses evoked by disinhibition of neurons in the DMH. Thus, sympathetic vasomotor and respiratory responses generated from the dlPAG are dependent upon neuronal activity in the DMH, but not the converse. The results of this study together with those of previous studies indicate that the PAG regulates cardiovascular and respiratory function via both ascending projections to the DMH and descending projections to the ventral medulla, that originate from different PAG subregions.