SEARCH

SEARCH BY CITATION

References

  • Akram S, Teong HF, Fliegel L, Pervaiz S & Clement MV (2006). Reactive oxygen species-mediated regulation of the Na+-H+ exchanger 1 gene expression connects intracellular redox status with cells’ sensitivity to death triggers. Cell Death Differ 13, 628641.
  • Alvarez BV, Fujinaga J & Casey JR (2001). Molecular basis for angiotensin II-induced increase of chloride/bicarbonate exchange in the myocardium. Circ Res 89, 12461253.
  • Alvarez BV, Perez NG, Ennis IL, Camilion de Hurtado MC & Cingolani HE (1999). Mechanisms underlying the increase in force and Ca2+ transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect. Circ Res 85, 716722.
  • Allen DG & Kurihara S (1982). The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 327, 7994.
  • Anderson HD, Wang F & Gardner DG (2004). Role of the epidermal growth factor receptor in signalling strain-dependent activation of the brain natriuretic peptide gene. J Biol Chem 279, 92879297.
  • Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, Ohmoto H, Node K, Yoshino K, Ishiguro H, Asanuma H, Sanada S, Matsumura Y, Takeda H, Beppu S, Tada M, Hori M & Higashiyama S (2002). Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med 8, 3540.
  • Brandes RP (2005). Triggering mitochondrial radical release: a new function for NADPH oxidases. Hypertension 45, 847848.
  • Calaghan SC & White E (2001). Contribution of angiotensin II, endothelin 1 and the endothelium to the slow inotropic response to stretch in ferret papillary muscle. Pflugers Arch 441, 514520.
  • Caldiz CI, Garciarena CD, Dulce RA, Novaretto LP, Yeves AM, Ennis IL, Cingolani HE, Chiappe de Cingolani G & Perez NG (2007). Mitochondrial reactive oxygen species activate the slow force response to stretch in feline myocardium. J Physiol 584, 895905.
  • Cingolani HE, Alvarez BV, Ennis IL & Camilion de Hurtado MC (1998). Stretch-induced alkalinization of feline papillary muscle: an autocrine-paracrine system. Circ Res 83, 775780.
  • Cingolani HE, Chiappe GE, Ennis IL, Morgan PG, Alvarez BV, Casey JR, Dulce RA, Perez NG & Camilion de Hurtado MC (2003). Influence of Na+-independent Cl-HCO3 exchange on the slow force response to myocardial stretch. Circ Res 93, 10821088.
  • Cingolani HE, Perez NG, Aiello EA & De Hurtado MC (2005). Intracellular signalling following myocardial stretch: an autocrine/paracrine loop. Regul Pept 128, 211220.
  • Cingolani HE, Villa-Abrille MC, Cornelli M, Nolly A, Ennis IL, Garciarena C, Suburo AM, Torbidoni V, Correa MV, Camilion de Hurtado MC & Aiello EA (2006). The positive inotropic effect of angiotensin II: role of endothelin-1 and reactive oxygen species. Hypertension 47, 727734.
  • Dikalov S, Griendling KK & Harrison DG (2007). Measurement of reactive oxygen species in cardiovascular studies. Hypertension 49, 717727.
  • Drummond GB (2009). Reporting ethical matters in The Journal of Physiology: standards and advice. J Physiol 587, 713719.
  • Duquesnes N, Vincent F, Morel E, Lezoualc’h F & Crozatier B (2009). The EGF receptor activates ERK but not JNK Ras-dependently in basal conditions but ERK and JNK activation pathways are predominantly Ras-independent during cardiomyocyte stretch. Int J Biochem Cell Biol 41, 11731181.
  • Eigel BN, Gursahani H & Hadley RW (2004). ROS are required for rapid reactivation of Na+/Ca2+ exchanger in hypoxic reoxygenated guinea pig ventricular myocytes. Am J Physiol Heart Circ Physiol 286, H955963.
  • Ennis IL, Cingolani HE, Garciarena CD, Camilión de Hurtado MC, Villa-Abrille MC, Aiello EA & Pérez NG (2007). From Anrep's Phenomenon to myocardial hypertrophy: Role of the Na+/H+ exchanger. Curr Cardiol Rev 3, 149164.
  • Fliegel L & Karmazyn M (2004). The cardiac Na-H exchanger: a key downstream mediator for the cellular hypertrophic effects of paracrine, autocrine and hormonal factors. Biochem Cell Biol 82, 626635.
  • Haworth RS, McCann C, Snabaitis AK, Roberts NA & Avkiran M (2003). Stimulation of the plasma membrane Na+/H+ exchanger NHE1 by sustained intracellular acidosis. Evidence for a novel mechanism mediated by the ERK pathway. J Biol Chem 278, 3167631684.
  • Ito H, Hirata Y, Adachi S, Tanaka M, Tsujino M, Koike A, Nogami A, Murumo F & Hiroe M (1993). Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest 92, 398403.
  • Kagiyama S, Eguchi S, Frank GD, Inagami T, Zhang YC & Phillips MI (2002). Angiotensin II-induced cardiac hypertrophy and hypertension are attenuated by epidermal growth factor receptor antisense. Circulation 106, 909912.
  • Kentish JC & Wrzosek A (1998). Changes in force and cytosolic Ca2+ concentration after length changes in isolated rat ventricular trabeculae. J Physiol 506, 431444.
  • Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Suzuki T, Maeta H & Abe Y (2005). Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension 45, 860866.
  • Krieg T, Cui L, Qin Q, Cohen MV & Downey JM (2004). Mitochondrial ROS generation following acetylcholine-induced EGF receptor transactivation requires metalloproteinase cleavage of proHB-EGF. J Mol Cell Cardiol 36, 435443.
  • Lehoux S, Abe J, Florian JA & Berk BC (2001). 14-3-3 Binding to Na+/H+ exchanger isoform-1 is associated with serum-dependent activation of Na+/H+ exchange. J Biol Chem 276, 1579415800.
  • Lemarie CA, Paradis P & Schiffrin EL (2008). New insights on signalling cascades induced by cross-talk between angiotensin II and aldosterone. J Mol Med 86, 673678.
  • Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J & Anversa P (1998). Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest 101, 13261342.
  • Luers C, Fialka F, Elgner A, Zhu D, Kockskamper J, Von Lewinski D & Pieske B (2005). Stretch-dependent modulation of [Na+]i, [Ca2+]i, and pHi in rabbit myocardium: a mechanism for the slow force response. Cardiovasc Res 68, 454463.
  • Monroe RG, Gamble WJ, LaFarge CG, Kumar AE, Stark J, Sanders GL, Phornphutkul C & Davis M (1972). The Anrep effect reconsidered. J Clin Invest 51, 25732583.
  • Parmley WW & Chuck L (1973). Length-dependent changes in myocardial contractile state. Am J Physiol 224, 11951199.
  • Perez NG, Caldiz CI, Chiappe de Cingolani GE & Cingolani HE (2009). The slow force response to myocardial stretch requires transactivation of the epidermal growth factor receptor. Circulation 120, S782S783.
  • Perez NG, De Hurtado MC & Cingolani HE (2001). Reverse mode of the Na+-Ca2+ exchange after myocardial stretch: underlying mechanism of the slow force response. Circ Res 88, 376382.
  • Perez NG, Villa-Abrille MC, Aiello EA, Dulce RA, Cingolani HE & Camilion de Hurtado MC (2003). A low dose of angiotensin II increases inotropism through activation of reverse Na+/Ca2+ exchange by endothelin release. Cardiovasc Res 60, 589597.
  • Rosenblueth A, Alanis J, Lopez E & Rubio R (1959). The adaptation of ventricular muscle to different circulatory conditions. Arch Int Physiol Biochim 67, 358373.
  • Rothstein EC, Byron KL, Reed RE, Fliegel L & Lucchesi PA (2002). H2O2-induced Ca2+ overload in NRVM involves ERK1/2 MAP kinases: role for an NHE-1-dependent pathway. Am J Physiol Heart Circ Physiol 283, H598605.
  • Sabri A, Byron KL, Samarel AM, Bell J & Lucchesi PA (1998). Hydrogen peroxide activates mitogen-activated protein kinases and Na+-H+ exchange in neonatal rat cardiac myocytes. Circ Res 82, 10531062.
  • Sadoshima J, Xu Y, Slayter HS & Izumo S (1993). Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75, 977984.
  • Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA, Tonks NK & Barford D (2003). Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769773.
  • Sarnoff SJ, Mitchell JH, Gilmore JP & Remensnyder JP (1960). Homeometric autoregulation in the heart. Circ Res 8, 10771091.
  • Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y & Griendling KK (2002). Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 91, 406413.
  • Snabaitis AK, D’Mello R, Dashnyam S & Avkiran M (2006). A novel role for protein phosphatase 2A in receptor-mediated regulation of the cardiac sarcolemmal Na+/H+ exchanger NHE1. J Biol Chem 281, 2025220262.
  • Szokodi I, Kerkela R, Kubin AM, Sarman B, Pikkarainen S, Konyi A, Horvath IG, Papp L, Toth M, Skoumal R & Ruskoaho H (2008). Functionally opposing roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the regulation of cardiac contractility. Circulation 118, 16511658.
  • Takahashi E, Abe J, Gallis B, Aebersold R, Spring DJ, Krebs EG & Berk BC (1999). p90(RSK) is a serum-stimulated Na+/H+ exchanger isoform-1 kinase. Regulatory phosphorylation of serine 703 of Na+/H+ exchanger isoform-1. J Biol Chem 274, 2020620214.
  • Van Montfort RL, Congreve M, Tisi D, Carr R & Jhoti H (2003). Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423, 773777.
  • Von Anrep G (1912). On the part played by the suprarenals in the normal vascular reactions on the body. J Physiol 45, 307317.
  • Wetzker R & Bohmer FD (2003). Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol 4, 651657.
  • Yamazaki T, Komuro I, Kudoh S, Zou Y, Nagai R, Aikawa R, Uozumi H & Yazaki Y (1998). Role of ion channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy. Circ Res 82, 430437.
  • Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, Mizuno T, Maemura K, Kurihara H, Aikawa R, Takano H & Yazaki Y (1996). Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 271, 32213228.
  • Zhai P, Galeotti J, Liu J, Holle E, Yu X, Wagner T & Sadoshima J (2006). An angiotensin II type 1 receptor mutant lacking epidermal growth factor receptor transactivation does not induce angiotensin II-mediated cardiac hypertrophy. Circ Res 99, 528536.
  • Zhang YH, Dingle L, Hall R & Casadei B (2009). The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium. Biochim Biophys Acta 1787, 811817.
  • Zhou C, Ziegler C, Birder LA, Stewart AF & Levitan ES (2006). Angiotensin II and stretch activate NADPH oxidase to destabilize cardiac Kv4.3 channel mRNA. Circ Res 98, 10401047.
  • Zorov DB, Filburn CR, Klotz LO, Zweier JL & Sollott SJ (2000). Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192, 10011014.