SEARCH

SEARCH BY CITATION

References

  • Ban K, Kim KH, Cho CK, Sauvé M, Diamandis EP, Backx PH, Drucker DJ & Husain M (2010). Glucagon-like peptide (GLP)-1(9–36)amide-mediated cytoprotection is blocked by exendin(9–39) yet does not require the known GLP-1 receptor. Endocrinology 151, 15201531.
  • Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ & Husain M (2008). Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117, 23402350.
  • Beauvois MC, Arredouani A, Jonas JC, Rolland JF, Schuit F, Henquin JC & Gilon P (2004). Atypical Ca2+-induced Ca2+ release from a SERCA3-dependent Ca2+ pool of the endoplasmic reticulum in mouse pancreatic beta cells. J Physiol 559, 141156.
  • Bode HP, Moormann B, Dabew R & Goke B (1999). Glucagon-like peptide-1 elevates cytosolic calcium in pancreatic β-cells independently of protein kinase A. Endocrinology 140, 39193927.
  • Bos JL, Rehmann H & Wittinghofer A (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865877.
  • Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A & Zhu MX (2009). NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459, 596600.
  • Cazorla O, Lucas A, Poirier F, Lacampagne A & Lezoualc’h F (2009). The cAMP binding protein Epac regulates cardiac myofilament function. Proc Natl Acad Sci U S A 106, 1414414149.
  • Chepurny OG, Kelley GG, Dzhura I, Leech CA, Roe MW, Dzhura E, Li X, Schwede F, Genieser HG & Holz GG (2010). PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2′-O-Me-cAMP-AM in human islets of Langerhans. Am J Physiol Endocrinol Metab 298, E622E633.
  • Chepurny OG, Leech CA, Kelley GG, Dzhura I, Dzhura E, Li X, Rindler MJ, Schwede F, Genieser HG & Holz GG (2009). Enhanced Rap1 activation and insulin secretagogue properties of an acetoxymethyl ester of an Epac-selective cyclic AMP analog in rat INS-1 cells: studies with 8-pCPT-2′-O-Me-cAMP-AM. J Biol Chem 284, 1072810736.
  • Citro S, Malik S, Oestreich EA, Radeff-Huang J, Kelley GG, Smrcka AV & Brown JH (2007). Phospholipase Cɛ is a nexus for Rho and Rap-mediated G protein-coupled receptor-induced astrocyte proliferation. Proc Natl Acad Sci U S A 104, 1554315548.
  • de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A & Bos JL (1998). Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474477.
  • Drummond GB (2009). Reporting ethical matters in The Journal of Physiology: standards and advice. J Physiol 587, 713719.
  • Duquesnes N, Derangeon M, Métrich M, Lucas A, Mateo P, Li L, Morel E, Lezoualc’h F & Crozatier B (2010). Epac stimulation induces rapid increases in connexin43 phosphorylation and function without preconditioning effect. Pflugers Arch 460, 731741.
  • Dyachok O & Gylfe E (2004). Ca2+-induced Ca2+ release via inositol 1,4,5-trisphosphate receptors is amplified by protein kinase A. J Biol Chem 279, 4545545461.
  • Eliasson L, Abdulkader F, Braun M, Galvanovskis J, Hoppa MB & Rorsman P (2008). Novel aspects of the molecular mechanisms controlling insulin secretion. J Physiol 586, 33133324.
  • Eliasson L, Ma X, Renstrom E, Barg S, Berggren PO, Galvanovskis J, Gromada J, Jing X, Lundquist I, Salehi A, Sewing S & Rorsman P (2003). SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol 121, 181197.
  • Enyeart JA, Liu H & Enyeart JJ (2010). cAMP analogs and their metabolites enhance TREK-1 mRNA and K+ current expression in adrenocortical cells. Mol Pharmacol 77, 469482.
  • Fields AV, Patterson B, Karnik AA & Shannon RP (2009). Glucagon-like peptide-1 and myocardial protection: more than glycemic control. Clin Cardiol 32, 236243.
  • Fridolf T & Ahren B (1991). GLP-1-(7–36)-amide stimulates insulin secretion in rat islets: studies on the mode of action. Diabetes Res 16, 185191.
  • Gromada J, Anker C, Bokvist K, Knudsen LB & Wahl P (1998). Glucagon-like peptide-1 receptor expression in Xenopus oocytes stimulates inositol trisphosphate-dependent intracellular Ca2+ mobilization. FEBS Lett 425, 277280.
  • Gromada J, Brock B, Schmitz O & Rorsman P (2004). Glucagon-like peptide-1: regulation of insulin secretion and therapeutic potential. Basic Clin Pharmacol Toxicol 95, 252262.
  • Gromada J, Dissing S, Bokvist K, Renstrom E, Frokjaer-Jensen J, Wulff BS & Rorsman P (1995). Glucagon-like peptide-1 increases cytoplasmic Ca2+ in insulin-secreting betaTC3 cells by enhancement of intracellular Ca2+ mobilization. Diabetes 44, 767774.
  • Grynkiewicz G, Poenie M & Tsien RY (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260, 34403450.
  • Hatakeyama H, Kishimoto T, Nemoto T, Kasai H & Takahashi N (2006). Rapid glucose sensing by protein kinase A for insulin exocytosis in mouse pancreatic islets. J Physiol 570, 271282.
  • Hatakeyama H, Takahashi N, Kishimoto T, Nemoto T & Kasai H (2007). Two cAMP-dependent pathways differentially regulate exocytosis of large dense-core and small vesicles in mouse β-cells. J Physiol 582, 10871098.
  • Holz GG (2004). Epac: a new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic β-cell. Diabetes 53, 513.
  • Holz GG, Chepurny OG & Schwede F (2008). Epac-selective cAMP analogs: new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cell Signal 20, 1020.
  • Holz GG, Kuhtreiber WM & Habener JF (1993). Pancreatic β-cells are rendered glucose competent by the insulinotropic hormone glucagon-like peptide-1-(7–37). Nature 361, 362365.
  • Holz GG, Leech CA, Heller RS, Castonguay M & Habener JF (1999). cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic β-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7–37). J Biol Chem 274, 1414714156.
  • Hothi SS, Gurung IS, Heathcote JC, Zhang Y, Booth SW, Skepper JN, Grace AA & Huang CL (2008). Epac activation, altered calcium homeostasis and ventricular arrhythmogenesis in the murine heart. Pflugers Arch 457, 253270.
  • Idevall-Hagren O, Barg S, Gylfe E & Tengholm A (2010). cAMP mediators of pulsatile insulin secretion from glucose-stimulated single β-cells. J Biol Chem 285, 2300723018.
  • Islam MS, Rorsman P & Berggren PO (1992). Ca2+-induced Ca2+ release in insulin-secreting cells. FEBS Lett 296, 287291.
  • Kang G, Chepurny OG & Holz GG (2001). cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic β-cells. J Physiol 536, 375385.
  • Kang G, Chepurny OG, Rindler MJ, Collis L, Chepurny Z, Li WH, Harbeck M, Roe MW & Holz GG (2005). A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic β cells. J Physiol 566, 173188.
  • Kang G & Holz GG (2003). Amplification of exocytosis by Ca2+-induced Ca2+ release in INS-1 pancreatic β cells. J Physiol 546, 175189.
  • Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, Bos JL, Schwede F, Genieser HG & Holz GG (2003). Epac-selective cAMP analog 8-pCPT-2′-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic β cells. J Biol Chem 278, 82798285.
  • Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H & Seino S (2001). Critical role of cAMP-GEFII–Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 276, 4604646053.
  • Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE & Graybiel AM (1998). A family of cAMP-binding proteins that directly activate Rap1. Science 282, 22752279.
  • Kelley GG, Chepurny OG, Schwede F, Genieser HG, Leech CA, Roe MW, Li X, Dzhura I, Dzhura E, Afshari P & Holz GG (2009). Glucose-dependent potentiation of mouse islet insulin secretion by Epac activator 8-pCPT-2′-O-Me-cAMP-AM. Islets 1, 260265.
  • Kelley GG, Reks SE, Ondrako JM & Smrcka AV (2001). Phospholipase Cɛ: a novel Ras effector. EMBO J 20, 743754.
  • Kelley GG, Reks SE & Smrcka AV (2004). Hormonal regulation of phospholipase Cɛ through distinct and overlapping pathways involving G12 and Ras family G-proteins. Biochem J 378, 129139.
  • Kim BJ, Park KH, Yim CY, Takasawa S, Okamoto H, Im MJ & Kim UH (2008). Generation of nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose by glucagon-like peptide-1 evokes Ca2+ signal that is essential for insulin secretion in mouse pancreatic islets. Diabetes 57, 868878.
  • Kwan EP, Xie L, Sheu L, Ohtsuka T & Gaisano HY (2007). Interaction between Munc13–1 and RIM is critical for glucagon-like peptide-1-mediated rescue of exocytotic defects in Munc13–1-deficient pancreatic β-cells. Diabetes 56, 25792588.
  • Laxman S, Riechers A, Sadilek M, Schwede F & Beavo JA (2006). Hydrolysis products of cAMP analogs cause transformation of Trypanosoma brucei from slender to stumpy-like forms. Proc Natl Acad Sci U S A 103, 1919419199.
  • Leech CA, Dzhura I, Chepurny OG, Schwede F, Genieser HG & Holz GG (2010). Facilitation of beta-cell KATP channel sulfonylurea sensitivity by a cAMP analog selective for the cAMP-regulated guanine nucleotide exchange factor Epac. Islets 2, 7281.
  • Lemmens R, Larsson O, Berggren PO & Islam MS (2001). Ca2+-induced Ca2+ release from the endoplasmic reticulum amplifies the Ca2+ signal mediated by activation of voltage-gated L-type Ca2+ channels in pancreatic β-cells. J Biol Chem 276, 99719977.
  • Livak KJ & Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the inline image method. Methods 25, 402408.
  • Lopez I, Mak EC, Ding J, Hamm HE & Lomasney JW (2001). A novel bifunctional phospholipase C that is regulated by Gα12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem 276, 27582765.
  • Mangmool S, Shukla AK & Rockman HA (2010). β-Arrestin-dependent activation of Ca+/calmodulin kinase II after β1-adrenergic receptor stimulation. J Cell Biol 189, 573587.
  • Métrich M, Laurent AC, Breckler M, Duquesnes N, Hmitou I, Courillau D, Blondeau JP, Crozatier B, Lezoualc’h F & Morel E (2010). Epac activation induces histone deacetylase nuclear export via a Ras-dependent signalling pathway. Cell Signal 22, 14591468.
  • Métrich M, Lucas A, Gastineau M, Samuel JL, Heymes C, Morel E & Lezoualc’h F (2008). Epac mediates β-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res 102, 959965.
  • Morel E, Marcantoni A, Gastineau M, Birkedal R, Rochais F, Garnier A, Lompré AM, Vandecasteele G & Lezoualc’h F (2005). cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res 97, 12961304.
  • Naylor E, Arredouani A, Vasudevan SR, Lewis AM, Parkesh R, Mizote A, Rosen D, Thomas JM, Izumi M, Ganesan A, Galione A & Churchill GC (2009). Identification of a chemical probe for NAADP by virtual screening. Nat Chem Biol 5, 220226.
  • Oestreich EA, Malik S, Goonasekera SA, Blaxall BC, Kelley GG, Dirksen RT & Smrcka AV (2009). Epac and phospholipase Cɛ regulate Ca2+ release in the heart by activation of protein kinase Cɛ and calcium-calmodulin kinase II. J Biol Chem 284, 15141522.
  • Oestreich EA, Wang H, Malik S, Kaproth-Joslin KA, Blaxall BC, Kelley GG, Dirksen RT & Smrcka AV (2007). Epac-mediated activation of phospholipase Cɛ plays a critical role in β-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes. J Biol Chem 282, 54885495.
  • Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y & Seino S (2000). cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2, 805811.
  • Pereira L, Métrich M, Fernández-Velasco M, Lucas A, Leroy J, Perrier R, Morel E, Fischmeister R, Richard S, Bénitah JP, Lezoualc’h F & Gómez AM (2007). The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. J Physiol 583, 685694.
  • Renstrom E, Eliasson L & Rorsman P (1997). Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol 502, 105118.
  • Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, Lomasney JW & Jakobs KH (2001). A new phospholipase C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol 3, 10201024.
  • Seino S & Shibasaki T (2005). PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85, 13031342.
  • Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M, Zhang C, Tamamoto A, Satoh T, Miyazaki J & Seino S (2007). Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci U S A 104, 1933319338.
  • Somekawa S, Fukuhara S, Nakaoka Y, Fujita H, Saito Y & Mochizuki N (2005). Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes. Circ Res 97, 655662.
  • Song C, Hu CD, Masago M, Kariyai K, Yamawaki-Kataoka Y, Shibatohge M, Wu D, Satoh T & Kataoka T (2001). Regulation of a novel human phospholipase C, PLCɛ, through membrane targeting by Ras. J Biol Chem 276, 27522757.
  • Song C, Satoh T, Edamatsu H, Wu D, Tadano M, Gao X & Kataoka T (2002). Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase Cɛ. Oncogene 21, 81058113.
  • Suzuki Y, Zhang H, Saito N, Kojima I, Urano T & Mogami H (2006). Glucagon-like peptide 1 activates protein kinase C through Ca2+-dependent activation of phospholipase C in insulin-secreting cells. J Biol Chem 281, 2849928507.
  • Thams P, Anwar MR & Capito K (2005). Glucose triggers protein kinase A-dependent insulin secretion in mouse pancreatic islets through activation of the K+ATP channel-dependent pathway. Eur J Endocrinol 152, 671677.
  • Treiman M, Elvekjaer M, Engstrøm T & Jensen JS (2010). Glucagon-like peptide 1—a cardiologic dimension. Trends Cardiovasc Med 20, 812.
  • Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, Balel C, Wang M, Jia N, Zhang W, Lew F, Chan SL, Chen Y & Lu Y (2010). DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140, 222234.
  • Vliem MJ, Ponsioen B, Schwede F, Pannekoek WJ, Riedl J, Kooistra MR, Jalink K, Genieser HG, Bos JL & Rehmann H (2008). 8-pCPT-2′-O-Me-cAMP-AM: an improved Epac-selective cAMP analogue. Chembiochem 9, 20522054.
  • Wan Q-F, Dong Y, Yang H, Lou X, Ding J & Xu T (2004). Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+. J Gen Physiol 124, 653662.
  • Wang H, Oestreich EA, Maekawa N, Bullard TA, Vikstrom KL, Dirksen RT, Kelley GG, Blaxall BC & Smrcka AV (2005). Phospholipase C ɛ modulates β-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circ Res 97, 13051313.
  • Wheeler MB, Lu M, Dillon JS, Leng XH, Chen C & Boyd AE 3rd (1993). Functional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology 133, 5762.
  • Widmann C, Bürki E, Dolci W & Thorens B (1994). Signal transduction by the cloned glucagon-like peptide-1 receptor: comparison with signaling by the endogenous receptors of beta cell lines. Mol Pharmacol 45, 10291035.
  • Yang Y & Gillis KD (2004). A highly Ca2+-sensitive pool of granules is regulated by glucose and protein kinases in insulin-secreting INS-1 cells. J Gen Physiol 124, 641651.
  • Zhang Q, Bengtsson M, Partridge C, Salehi A, Braun M, Cox R, Eliasson L, Johnson PR, Renström E, Schneider T, Berggren PO, Göpel S, Ashcroft FM & Rorsman P (2007). R-type Ca2+ channel-evoked CICR regulates glucose-induced somatostatin secretion. Nat Cell Biol 9, 453460.