SEARCH

SEARCH BY CITATION

References

  • Bamber BA, Beg AA, Twyman RE & Jorgensen EM (1999). The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J Neurosci 19, 53485359.
  • Bargmann CI (1998). Neurobiology of the Caenorhabditis elegans genome. Science 282, 20282033.
  • Bauer Huang SL, Saheki Y, VanHoven MK, Torayama I, Ishihara T, Katsura I et al . (2007). Left-right olfactory asymmetry results from antagonistic functions of voltage-activated calcium channels and the Raw repeat protein OLRN-1 in C. elegans. Neural Dev 2, 24.
  • Berg AP, Sen N & Bayliss DA (2007). TrpC3/C7 and Slo2.1 are molecular targets for metabotropic glutamate receptor signaling in rat striatal cholinergic interneurons. J Neurosci 27, 88458856.
  • Bhattacharjee A, Gan L & Kaczmarek LK (2002). Localization of the Slack potassium channel in the rat central nervous system. J Comp Neurol 454, 241254.
  • Bhattacharjee A, von Hehn CA, Mei X & Kaczmarek LK (2005). Localization of the Na+-activated K+ channel Slick in the rat central nervous system. J Comp Neurol 484, 8092.
  • Boyle JH & Cohen N. (2008). Caenorhabditis elegans body wall muscles are simple actuators. Biosystems 94, 170181.
  • Brown MR, Kronengold J, Gazula VR, Chen Y, Strumbos JG, Sigworth FJ et al . (2010). Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat Neurosci. 13, 819821.
  • Budelli G, Hage TA, Wei A, Rojas P, Jong YJ, O’Malley K & Salkoff L (2009). Na+-activated K+ channels express a large delayed outward current in neurons during normal physiology. Nat Neurosci 12, 745750.
  • Cairns SP, Buller SJ, Loiselle DS & Renaud JM (2003). Changes of action potentials and force at lowered [Na+]o in mouse skeletal muscle: implications for fatigue. Am J Physiol Cell Physiol 285, C1131C1141.
  • Cannell MB, Cheng H & Lederer WJ (1995). The control of calcium release in heart muscle. Science 268, 10451049.
  • Catterall WA (1986). Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem 55, 953985.
  • Chalfie M & White J (1988). The nervous system. In The Nematode Caenorhabditis elegans, The community of C. elegans researchers, ed. WoodWB, pp. 337391. Cold Spring Harbor Laboratory Press, Plainview .
  • Cooke IM & Grinnell AD (1964). Effect of tubocurarine on action potentials in normal and denervated skeletal muscle. J Physiol 175, 203210.
  • Crofton HD (1971). Form, function and behavior. In Plant Parasitic Nematodes, ed. ZuckermannBM, MaiWF & RohdeRA, pp. 83113. Academic Press, New York .
  • Cruz LJ, Gray WR, Olivera BM, Zeikus RD, Kerr L, Yoshikami D & Moczydlowski E (1985). Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J Biol Chem 260, 92809288.
  • Culetto E, Baylis HA, Richmond JE, Jones AK, Fleming JT, Squire MD et al . (2004). The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor α subunit. J Biol Chem 279, 4247642483.
  • Davis MW, Fleischhauer R, Dent JA, Joho RH & Avery L (1999). A mutation in the C. elegans EXP-2 potassium channel that alters feeding behavior. Science 286, 25012504.
  • de Bono M & Maricq AV (2005). Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 28, 451501.
  • Dryer SE (2003). Molecular identification of the Na+-activated K+ channel. Neuron 37, 727728.
  • Evans TC (2006). Transformation and microinjection. In WormBook, ed. WoodWB & The C. elegans research community. http://www.wormbook.org.
  • Fawcett GL, Santi CM, Butler A, Harris T, Covarrubias M & Salkoff L (2006). Mutant analysis of the Shal (Kv4) voltage-gated fast transient K+ channel in Caenorhabditis elegans. J Biol Chem 281, 3072530735.
  • Francis MM, Evans SP, Jensen M, Madsen DM, Mancuso J, Norman KR & Maricq AV (2005). The Ror receptor tyrosine kinase CAM-1 is required for ACR-16-mediated synaptic transmission at the C. elegans neuromuscular junction. Neuron 46, 581594.
  • Franks CJ, Pemberton D, Vinogradova I, Cook A, Walker RJ & Holden-Dye L (2002). Ionic basis of the resting membrane potential and action potential in the pharyngeal muscle of Caenorhabditis elegans. J Neurophysiol 87, 954961.
  • Hudson AJ, Ebers GC & Bulman DE (1995). The skeletal muscle sodium and chloride channel diseases. Brain 118, 547563.
  • Jentsch TJ, Friedrich T, Schriever A & Yamada H (1999). The CLC chloride channel family. Pflugers Arch 437, 783795.
  • Johnson CD & Stretton AOW (1980). Neural control of locomotion in Ascaris: anatomy, electrophysiology, and biochemistry. In Nematodes as Biological Models, ed. ZuckermannBM, pp. 159195. Academic Press, New York .
  • Jospin M, Jacquemond V, Mariol MC, Segalat L & Allard B (2002). The L-type voltage-dependent Ca2+ channel EGL-19 controls body wall muscle function in Caenorhabditis elegans. J Cell Biol 159, 337348.
  • Jospin M, Watanabe S, Joshi D, Young S, Hamming K, Thacker C et al . (2007). UNC-80 and the NCA ion channels contribute to endocytosis defects in synaptojanin mutants. Curr Biol 17, 15951600.
  • Kotlikoff MI (2003). Calcium-induced calcium release in smooth muscle: the case for loose coupling. Prog Biophys Mol Biol 83, 171191.
  • Kunkel MT, Johnstone DB, Thomas JH & Salkoff L (2000). Mutants of a temperature-sensitive two-P domain potassium channel. J Neurosci 20, 75177524.
  • Kwok TC, Ricker N, Fraser R, Chan AW, Burns A, Stanley EF et al . (2006). A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 441, 9195.
  • Lecroisey C, Segalat L & Gieseler K (2007). The C. elegans dense body: anchoring and signaling structure of the muscle. J Muscle Res Cell Motil 28, 7987.
  • Lee RY, Lobel L, Hengartner M, Horvitz HR & Avery L (1997). Mutations in the α1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J 16, 60666076.
  • Liu Q, Chen B, Gaier E, Joshi J & Wang ZW (2006). Low conductance gap junctions mediate specific electrical coupling in body-wall muscle cells of Caenorhabditis elegans. J Biol Chem 281, 78817889.
  • Liu Q, Chen B, Yankova M, Morest DK, Maryon E, Hand AR et al . (2005). Presynaptic ryanodine receptors are required for normal quantal size at the Caenorhabditis elegans neuromuscular junction. J Neurosci 25, 67456754.
  • Lockery SR & Goodman MB (2009). The quest for action potentials in C. elegans neurons hits a plateau. Nat Neurosci 12, 377378.
  • Lu B, Su Y, Das S, Liu J, Xia J & Ren D (2007). The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129, 371383.
  • Maryon EB, Coronado R & Anderson P (1996). unc-68 encodes a ryanodine receptor involved in regulating C. elegans body-wall muscle contraction. J Cell Biol 134, 885893.
  • Maryon EB, Saari B & Anderson P (1998). Muscle-specific functions of ryanodine receptor channels in Caenorhabditis elegans. J Cell Sci 111, 28852895.
  • Mellem JE, Brockie PJ, Madsen DM & Maricq AV (2008). Action potentials contribute to neuronal signaling in C. elegans. Nat Neurosci 11, 865867.
  • Mitani A & Shattock MJ (1992). Role of Na-activated K channel, Na-K-Cl cotransport, and Na-K pump in [K]e changes during ischemia in rat heart. Am J Physiol Heart Circ Physiol 263, H333H340.
  • Moerman DG & Fire A (1997). Muscle: structure, function, and development. In C elegans II, ed. RiddleRL, BlumenthalT, MeyerBJ & PriessJR, pp. 417470. Cold Spring Harbor Laboratory Press, Plainview .
  • Nakai J, Dirksen RT, Nguyen HT, Pessah IN, Beam KG & Allen PD (1996). Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380, 7275.
  • Niebur E & Erdos P (1988). Computer simulation of networks of electrotonic neurons. In Computer Simulation in Brain Science, ed. CotterillRMJ, pp. 148163. Cambridge University Press, Cambridge .
  • Okkema PG, Harrison SW, Plunger V, Aryana A & Fire A (1993). Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics 135, 385404.
  • Redfern P, Lundh H & Thesleff S (1970). Tetrodotoxin resistant action potentials in denervated rat skeletal muscle. Eur J Pharmacol 11, 263265.
  • Richmond JE & Jorgensen EM (1999). One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci 2, 791797.
  • Richmond JE, Weimer RM & Jorgensen EM (2001). An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412, 338341.
  • Ruffin VA, Gu XQ, Zhou D, Douglas RM, Sun X, Trouth CO & Haddad GG (2008). The sodium-activated potassium channel Slack is modulated by hypercapnia and acidosis. Neuroscience 151, 410418.
  • Salkoff L (1985). Development of ion channels in the flight muscles of Drosophila. J Physiol (Paris) 80, 275282.
  • Salkoff L, Butler A, Fawcett G, Kunkel M, McArdle C, Paz-y-Mino G et al . (2001). Evolution tunes the excitability of individual neurons. Neuroscience 103, 853859.
  • Salkoff L, Wei AD, Baban B, Butler A, Fawcett G, Ferreira G & Santi CM (2005). Potassium channels in C. elegans. In Wormbook, ed. The C. elegans Research Community. http://www.wormbook.org.
  • Santi CM, Ferreira G, Yang B, Gazula VR, Butler A, Wei A et al . (2006). Opposite regulation of Slick and Slack K+ channels by neuromodulators. J Neurosci 26, 50595068.
  • Santi CM, Yuan A, Fawcett G, Wang ZW, Butler A, Nonet ML et al . (2003). Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference. Proc Natl Acad Sci U S A 100, 1439114396.
  • Schneider MF (1994). Control of calcium release in functioning skeletal muscle fibers. Annu Rev Physiol 56, 463484.
  • Shtonda B & Avery L (2005). CCA-1, EGL-19 and EXP-2 currents shape action potentials in the Caenorhabditis elegans pharynx. J Exp Biol 208, 21772190.
  • Steger KA, Shtonda BB, Thacker C, Snutch TP & Avery L (2005). The C. elegans T-type calcium channel CCA-1 boosts neuromuscular transmission. J Exp Biol 208, 21912203.
  • Sulston JE & Hodgkin J (1988). Methods. In The Nematode Caenorhabditis Elegans, ed. WoodWB & The Community of C. elegans Researchers, pp. 587606. Cold Spring Harbor Laboratory Press, Cold Spring Harbor , NY .
  • Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R et al . (2006). Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A 103, 47534758.
  • Tamsett TJ, Picchione KE & Bhattacharjee A (2009). NAD+ activates KNa channels in dorsal root ganglion neurons. J Neurosci 29, 51275134.
  • Tanouye MA, Ferrus A & Fujita SC (1981). Abnormal action potentials associated with the Shaker complex locus of Drosophila. Proc Natl Acad Sci U S A 78, 65486552.
  • Touroutine D, Fox RM, Von Stetina SE, Burdina A, Miller DM 3rd & Richmond JE (2005). acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J Biol Chem 280, 2701327021.
  • Trimmer JS, Cooperman SS, Tomiko SA, Zhou JY, Crean SM, Boyle MB et al . (1989). Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3, 3349.
  • Tsien RW, Hess P, McCleskey EW & Rosenberg RL (1987). Calcium channels: mechanisms of selectivity, permeation, and block. Annu Rev Biophys Biophys Chem 16, 265290.
  • Verkhratsky A & Shmigol A (1996). Calcium-induced calcium release in neurones. Cell Calcium 19, 114.
  • Wang ZW (2010). Origin of quantal size variation and high-frequency miniature postsynaptic currents at the Caenorhabditis elegans neuromuscular junction. J Neurosci Res 88, 34253432.
  • Wang ZW, Saifee O, Nonet ML & Salkoff L (2001). SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron 32, 867881.
  • Wei A, Jegla T & Salkoff L (1996). Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology 35, 805829.
  • Wolters H, Wallinga W, Ypey DL & Boom HB (1994). Ionic currents during action potentials in mammalian skeletal muscle fibers analyzed with loose patch clamp. Am J Physiol Cell Physiol 267, C1699C1706.
  • Yeh E, Ng S, Zhang M, Bouhours M, Wang Y, Wang M et al . (2008). A putative cation channel, NCA-1, and a novel protein, UNC-80, transmit neuronal activity in C. elegans. PLoS Biol 6, e55.
  • Yuan A, Dourado M, Butler A, Walton N, Wei A & Salkoff L (2000). SLO-2, a K+ channel with an unusual Cl dependence. Nat Neurosci 3, 771779.
  • Yuan A, Santi CM, Wei A, Wang ZW, Pollak K, Nonet M et al . (2003). The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron 37, 765773.
  • Zhang L, Sukhareva M, Barker JL, Maric D, Hao Y, Chang YH et al . (2005). Direct binding of estradiol enhances Slack (sequence like a calcium-activated potassium channel) channels’ activity. Neuroscience 131, 275282.