SEARCH

SEARCH BY CITATION

References

  • Anthony JC, Lang CH, Crozier SJ, Anthony TG, MacLean DA, Kimball SR & Jefferson LS (2002). Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am J Physiol Endocrinol Metab 282, E1092E1101.
  • Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS & Kimball SR (2000). Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr 130, 24132419.
  • Augert G, Monier S & Le Marchand-Brustel Y (1986). Effect of exercise on protein turnover in muscles of lean and obese mice. Diabetologia 29, 248253.
  • Baar K & Esser K (1999). Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol Cell Physiol 276, C120C127.
  • Balachandran S & Barber GN (2004). Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell 5, 5165.
  • Bamman MM, Petrella JK, Kim JS, Mayhew DL & Cross JM (2007). Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J Appl Physiol 102, 22322239.
  • Bamman MM, Ragan RC, Kim JS, Cross JM, Hill VJ, Tuggle SC & Allman RM (2004). Myogenic protein expression before and after resistance loading in 26- and 64-yr-old men and women. J Appl Physiol 97, 13291337.
  • Blomstrand E, Eliasson J, Karlsson HK & Kohnke R (2006). Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr 136, 269S273S.
  • Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ & Yancopoulos GD (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3, 10141019.
  • Bolster DR, Jefferson LS & Kimball SR (2004). Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling. Proc Nutr Soc 63, 351356.
  • Burd NA, Holwerda AM, Selby KC, West DW, Staples AW, Cain NE, Cashaback JG, Potvin JR, Baker SK & Phillips SM (2010). Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol 588, 31193130.
  • Butcher NJ, Arulpragasam A, Goh HL, Davey T & Minchin RF (2005). Genomic organization of human arylamine N-acetyltransferase Type I reveals alternative promoters that generate different 5′-UTR splice variants with altered translational activities. Biochem J 387, 119127.
  • Carter MS & Sarnow P (2000). Distinct mRNAs that encode La autoantigen are differentially expressed and contain internal ribosome entry sites. J Biol Chem 275, 2830128307.
  • Chen YJ, Tan BC, Cheng YY, Chen JS & Lee SC (2010). Differential regulation of CHOP translation by phosphorylated eIF4E under stress conditions. Nucleic Acids Res 38, 764777.
  • Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR & Hawley JA (2006). Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 20, 190192.
  • Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E & Rasmussen BB (2008). Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab 294, E392E400.
  • Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E & Rasmussen BB (2006). Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol 576, 613624.
  • Drummond GB (2009). Reporting ethical matters in The Journal of Physiology: standards and advice. J Physiol 587, 713719.
  • Duchene S, Audouin E, Berri C, Dupont J & Tesseraud S (2008a). Tissue-specific regulation of S6K1 by insulin in chickens divergently selected for growth. Gen Comp Endocrinol 156, 190198.
  • Duchene S, Audouin E, Crochet S, Duclos MJ, Dupont J & Tesseraud S (2008b). Involvement of the ERK1/2 MAPK pathway in insulin-induced S6K1 activation in avian cells. Domest Anim Endocrinol 34, 6373.
  • Evans W, Phinney S & Young V (1982). Suction applied to a muscle biopsy maximizes sample size. Med Sci Sports Exerc 14, 101102.
  • Farrell PA, Fedele MJ, Vary TC, Kimball SR, Lang CH & Jefferson LS (1999). Regulation of protein synthesis after acute resistance exercise in diabetic rats. Am J Physiol Endocrinol Metab 276, E721E727.
  • Farrell PA, Hernandez JM, Fedele MJ, Vary TC, Kimball SR & Jefferson LS (2000). Eukaryotic initiation factors and protein synthesis after resistance exercise in rats. J Appl Physiol 88, 10361042.
  • Fingar DC, Salama S, Tsou C, Harlow E & Blenis J (2002). Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16, 14721487.
  • Glover EI, Oates BR, Tang JE, Moore DR, Tarnopolsky MA & Phillips SM (2008). Resistance exercise decreases eIF2Bɛ phosphorylation and potentiates the feeding-induced stimulation of p70S6K1 and rpS6 in young men. Am J Physiol Regul Integr Comp Physiol 295, R604R610.
  • Goodman CA, Miu MH, Frey JW, Mabrey DM, Lincoln HC, Ge Y, Chen J & Hornberger TA (2010). A PI3K/PKB-independent activation of mTOR signaling is sufficient to induce skeletal muscle hypertrophy. Mol Biol Cell 21, 32583268.
  • Han JW, Pearson RB, Dennis PB & Thomas G (1995). Rapamycin, wortmannin, and the methylxanthine SQ20006 inactivate p70s6k by inducing dephosphorylation of the same subset of sites. J Biol Chem 270, 21 39621 403.
  • Hardt SE, Tomita H, Katus HA & Sadoshima J (2004). Phosphorylation of eukaryotic translation initiation factor 2Bɛ by glycogen synthase kinase-3β regulates β-adrenergic cardiac myocyte hypertrophy. Circ Res 94, 926935.
  • Holz MK, Ballif BA, Gygi SP & Blenis J (2005). mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123, 569580.
  • Huang BP, Wang Y, Wang X, Wang Z & Proud CG (2009). Blocking eukaryotic initiation factor 4F complex formation does not inhibit the mTORC1-dependent activation of protein synthesis in cardiomyocytes. Am J Physiol Heart Circ Physiol 296, H505H514.
  • Kim JS, Petrella JK, Cross JM & Bamman MM (2007). Load-mediated down-regulation fo myostatin mRNA is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis. J Appl Physiol 103, 14881495.
  • Kimball SR, Farrell PA & Jefferson LS (2002). Invited Review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol 93, 11681180.
  • Kimball SR, Horetsky RL & Jefferson LS (1998). Implication of eIF2B rather than eIF4E in the regulation of global protein synthesis by amino acids in L6 myoblasts. J Biol Chem 273, 3094530953.
  • Kubica N, Bolster DR, Farrell PA, Kimball SR & Jefferson LS (2005). Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bɛ mRNA in a mammalian target of rapamycin-dependent manner. J Biol Chem 280, 75707580.
  • Kubica N, Crispino JL, Gallagher JW, Kimball SR & Jefferson LS (2008). Activation of the mammalian target of rapamycin complex 1 is both necessary and sufficient to stimulate eukaryotic initiation factor 2Bɛ mRNA translation and protein synthesis. Int J Biochem Cell Biol 40, 25222533.
  • Lai KM, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E, Stitt TN, Economides AN, Yancopoulos GD & Glass DJ (2004). Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 24, 92959304.
  • Mayhew DL, Kim JS, Cross JM, Ferrando AA & Bamman MM (2009). Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. J Appl Physiol 107, 16551662.
  • Mohammad-Qureshi SS, Haddad R, Hemingway EJ, Richardson JP & Pavitt GD (2007). Critical contacts between the eukaryotic initiation factor 2B (eIF2B) catalytic domain and both eIF2β and -2γ mediate guanine nucleotide exchange. Mol Cell Biol 27, 52255234.
  • Norton LE & Layman DK (2006). Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr 136, 533S537S.
  • Ohanna M, Sobering AK, Lapointe T, Lorenzo L, Praud C, Petroulakis E, Sonenberg N, Kelly PA, Sotiropoulos A & Pende M (2005). Atrophy of S6K1(–/–) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 7, 286294.
  • Oldfield S, Jones BL, Tanton D & Proud CG (1994). Use of monoclonal antibodies to study the structure and function of eukaryotic protein synthesis initiation factor eIF-2B. Eur J Biochem 221, 399410.
  • Parkington JD, Siebert AP, LeBrasseur NK & Fielding RA (2003). Differential activation of mTOR signaling by contractile activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 285, R1086R1090.
  • Pearson RB, Dennis PB, Han JW, Williamson NA, Kozma SC, Wettenhall RE & Thomas G (1995). The principal target of rapamycin-induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J 14, 52795287.
  • Petrella JK, Kim JS, Mayhew DL, Cross JM & Bamman MM (2008). Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol 104, 17361742.
  • Phillips SM, Tipton KD, Aarsland A, Wolf SE & Wolfe RR (1997). Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol Endocrinol Metab 273, E99E107.
  • Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD & Glass DJ (2001). Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3, 10091013.
  • Singh CR, Udagawa T, Lee B, Wassink S, He H, Yamamoto Y, Anderson JT, Pavitt GD & Asano K (2007). Change in nutritional status modulates the abundance of critical pre-initiation intermediate complexes during translation initiation in vivo. J Mol Biol 370, 315330.
  • Tang H, Hornstein E, Stolovich M, Levy G, Livingstone M, Templeton D, Avruch J & Meyuhas O (2001). Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol 21, 86718683.
  • Thalacker-Mercer AE, Petrella JK & Bamman MM (2009). Does habitual dietary intake influence myofiber hypertrophy in response to resistance training? A cluster analysis. Appl Physiol Nutr Metab 34, 632639.
  • Tuckow AP, Vary TC, Kimball SR & Jefferson LS (2010). Ectopic expression of eIF2Bɛ in rat skeletal muscle rescues the sepsis-induced reduction in guanine nucleotide exchange activity and protein synthesis. Am J Physiol Endocrinol Metab 299, E241E248.
  • Vary TC & Lynch CJ (2006). Meal feeding enhances formation of eIF4F in skeletal muscle: role of increased eIF4E availability and eIF4G phosphorylation. Am J Physiol Endocrinol Metab 290, E631E642.
  • Webb BL & Proud CG (1997). Eukaryotic initiation factor 2B (eIF2B). Int J Biochem Cell Biol 29, 11271131.
  • Wek RC & Cavener DR (2007). Translational control and the unfolded protein response. Antioxid Redox Signal 9, 23572371.
  • Weng QP, Kozlowski M, Belham C, Zhang A, Comb MJ & Avruch J (1998). Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specific anti-phosphopeptide antibodies. J Biol Chem 273, 1662116629.
  • Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA & Rennie MJ (2008). Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol 586, 37013717.
  • Yang Q, Inoki K, Kim E & Guan KL (2006). TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proc Natl Acad Sci U S A 103, 68116816.