SEARCH

SEARCH BY CITATION

References

  • Antonescu CN, Huang C, Niu W, Liu Z, Eyers PA, Heidenreich KA, Bilan PJ & Klip A (2005). Reduction of insulin-stimulated glucose uptake in L6 myotubes by the protein kinase inhibitor SB203580 is independent of p38MAPK activity. Endocrinology 146, 37733781.
  • Aschenbach WG, Suzuki Y, Breeden K, Prats C, Hirshman MF, Dufresne SD, Sakamoto K, Vilardo PG, Steele M, Kim JH, Jing SL, Goodyear LJ & DePaoli-Roach AA (2001). The muscle-specific protein phosphatase PP1G/R(GL)(G(M))is essential for activation of glycogen synthase by exercise. J Biol Chem 276, 3995939967.
  • Birk JB & Wojtaszewski JF (2006). Predominant α2/β2/γ3 AMPK activation during exercise in human skeletal muscle. J Physiol 577, 10211032.
  • Blair DR, Funai K, Schweitzer GG & Cartee GD (2009). A myosin II ATPase inhibitor reduces force production, glucose transport, and phosphorylation of AMPK and TBC1D1 in electrically stimulated rat skeletal muscle. Am J Physiol Endocrinol Metab 296, E993E1002.
  • Bouskila M, Hunter RW, Ibrahim AF, Delattre L, Peggie M, van Diepen JA, Voshol PJ, Jensen J & Sakamoto K (2010). Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle. Cell Metab 12, 456466.
  • Cartee GD & Funai K (2009). Exercise and insulin: Convergence or divergence at AS160 and TBC1D1? Exerc Sport Sci Rev 37, 188195.
  • Cartee GD & Wojtaszewski JF (2007). Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl Physiol Nutr Metab 32, 557566.
  • Castorena CM, Mackrell JG, Bogan JS, Kanzaki M & Cartee GD (2011). Clustering of GLUT4, TUG and RUVBL2 protein levels correlate with myosin heavy chain isoform pattern in skeletal muscles, but AS160 and TBC1D1 levels do not. J Appl Physiol 111, 11061117.
  • Chambers MA, Moylan JS, Smith JD, Goodyear LJ & Reid MB (2009). Stretch-stimulated glucose uptake in skeletal muscle is mediated by reactive oxygen species and p38 MAP-kinase. J Physiol 587, 33633373.
  • Danforth WH (1965). Glycogen synthetase activity in skeletal muscle: interconversion of two forms and control of glycogen synthesis. J Biol Chem 240, 588593.
  • Egawa T, Hamada T, Kameda N, Karaike K, Ma X, Masuda S, Iwanaka N & Hayashi T (2009). Caffeine acutely activates 5′ adenosine monophosphate-activated protein kinase and increases insulin-independent glucose transport in rat skeletal muscles. Metabolism 58, 16091617.
  • Fisher JS, Gao J, Han DH, Holloszy JO & Nolte LA (2002). Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 282, E18E23.
  • Gao J, Gulve EA & Holloszy JO (1994). Contraction-induced increase in muscle insulin sensitivity: requirement for a serum factor. Am J Physiol Endocrinol Metab 266, E186E192.
  • Geiger PC, Han DH, Wright DC & Holloszy JO (2006). How muscle insulin sensitivity is regulated: testing of a hypothesis. Am J Physiol Endocrinol Metab 291, E1258E1263.
  • Geiger PC, Wright DC, Han DH & Holloszy JO (2005). Activation of p38 MAP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 288, E782E788.
  • Hargreaves M & Richter EA (1988). Regulation of skeletal muscle glycogenolysis during exercise. Can J Sport Sci 13, 197203.
  • Hawley JA, Burke LM, Phillips SM & Spriet LL (2011). Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol 110, 834845.
  • Hespel P & Richter EA (1992). Mechanism linking glycogen concentration and glycogenolytic rate in perfused contracting rat skeletal muscle. Biochem J 284, 777780.
  • Holloszy JO & Kohrt WM (1996). Regulation of carbohydrate and fat metabolism during and after exercise. Annu Rev Nutr 16, 121138.
  • Hunter RW, Treebak JT, Wojtaszewski JF & Sakamoto K (2011). Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle. Diabetes 60, 766774.
  • Ihlemann J, Ploug T, Hellsten Y & Galbo H (2000). Effect of stimulation frequency on contraction-induced glucose transport in rat skeletal muscle. Am J Physiol Endocrinol Metab 279, E862E867.
  • James JH, Wagner KR, King JK, Leffler RE, Upputuri RK, Balasubramaniam A, Friend LA, Shelly DA, Paul RJ & Fischer JE (1999). Stimulation of both aerobic glycolysis and Na+-K+-ATPase activity in skeletal muscle by epinephrine or amylin. Am J Physiol Endocrinol Metab 277, E176E186.
  • Jensen J & Lai YC (2009). Regulation of muscle glycogen synthase phosphorylation and kinetic properties by insulin, exercise, adrenaline and role in insulin resistance. Arch Physiol Biochem 115, 1321.
  • Jensen TE, Rose AJ, Hellsten Y, Wojtaszewski JF & Richter EA (2007). Caffeine-induced Ca2+ release increases AMPK-dependent glucose uptake in rodent soleus muscle. Am J Physiol Endocrinol Metab 293, E286E292.
  • Jessen N & Goodyear LJ (2005). Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol 99, 330337.
  • Jorgensen SB, Nielsen JN, Birk JB, Olsen GS, Viollet B, Andreelli F, Schjerling P, Vaulont S, Hardie DG, Hansen BF, Richter EA & Wojtaszewski JF (2004). The α2–5′AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes 53, 30743081.
  • Jørgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, Vaulont S, Richter EA & Wojtaszewski JFP (2004). Knockout of the α2 but not α1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 279, 10701079.
  • Kjaer M, Howlett K, Langfort J, Zimmerman-Belsing T, Lorentsen J, Bulow J, Ihlemann J, Feldt-Rasmussen U & Galbo H (2000). Adrenaline and glycogenolysis in skeletal muscle during exercise: a study in adrenalectomised humans. J Physiol 528, 371378.
  • Klip A (2009). The many ways to regulate glucose transporter 4. Appl Physiol Nutr Metab 34, 481487.
  • Koh HJ, Toyoda T, Fujii N, Jung MM, Rathod A, Middelbeek RJ, Lessard SJ, Treebak JT, Tsuchihara K, Esumi H, Richter EA, Wojtaszewski JF, Hirshman MF & Goodyear LJ (2010). Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle. Proc Natl Acad Sci U S A 107, 1554115546.
  • Lee-Young RS, Griffee SR, Lynes SE, Bracy DP, Ayala JE, McGuinness OP & Wasserman DH (2009). Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo. J Biol Chem 284, 2392523934.
  • Lucidi P, Rossetti P, Porcellati F, Pampanelli S, Candeloro P, Andreoli AM, Perriello G, Bolli GB & Fanelli CG (2010). Mechanisms of insulin resistance after insulin-induced hypoglycemia in humans: the role of lipolysis. Diabetes 59, 13491357.
  • Maarbjerg SJ, Sylow L & Richter EA (2011). Current understanding of increased insulin sensitivity after exercise – emerging candidates. Acta Physiol (Oxf) 202, 323335.
  • McBride A, Ghilagaber S, Nikolaev A & Hardie DG (2009). The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab 9, 2334.
  • Nicolaou P, Hajjar RJ & Kranias EG (2009). Role of protein phosphatase-1 inhibitor-1 in cardiac physiology and pathophysiology. J Mol Cell Cardiol 47, 365371.
  • Nielsen J, Holmberg HC, Schroder HD, Saltin B & Ortenblad N (2011). Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J Physiol 589, 28712885.
  • Nielsen JN, Derave W, Kristiansen S, Ralston E, Ploug T & Richter EA (2001). Glycogen synthase localization and activity in rat skeletal muscle is strongly dependent on glycogen content. J Physiol 531, 757769.
  • Nielsen JN & Wojtaszewski JF (2004). Regulation of glycogen synthase activity and phosphorylation by exercise. Proc Nutr Soc 63, 233237.
  • O’Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jorgensen SB, Schertzer JD, Shyroka O, Kiens B, van Denderen BJ, Tarnopolsky MA, Kemp BE, Richter EA & Steinberg GR (2011). AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U S A 108, 1609216097.
  • Parker GJ, Lund KC, Taylor RP & McClain DA (2003). Insulin resistance of glycogen synthase mediated by o-linked N-acetylglucosamine. J Biol Chem 278, 1002210027.
  • Prats C, Cadefau JA, Cusso R, Qvortrup K, Nielsen JN, Wojtaszewski JF, Hardie DG, Stewart G, Hansen BF & Ploug T (2005). Phosphorylation-dependent translocation of glycogen synthase to a novel structure during glycogen resynthesis. J Biol Chem 280, 2316523172.
  • Prats C, Gomez-Cabello A & Hansen AV (2011). Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling. Exp Physiol 96, 385390.
  • Prats C, Helge JW, Nordby P, Qvortrup K, Ploug T, Dela F & Wojtaszewski JF (2009). Dual regulation of muscle glycogen synthase during exercise by activation and compartmentalization. J Biol Chem 284, 1569215700.
  • Raney MA & Turcotte LP (2008). Evidence for the involvement of CaMKII and AMPK in Ca2+-dependent signaling pathways regulating FA uptake and oxidation in contracting rodent muscle. J Appl Physiol 104, 13661373.
  • Ribe D, Yang J, Patel S, Koumanov F, Cushman SW & Holman GD (2005). Endofacial competitive inhibition of glucose transporter-4 intrinsic activity by the mitogen-activated protein kinase inhibitor SB203580. Endocrinology 146, 17131717.
  • Richter EA, Derave W & Wojtaszewski JF (2001). Glucose, exercise and insulin: emerging concepts. J Physiol 535, 313322.
  • Richter EA, Ruderman NB, Gavras H, Belur ER & Galbo H (1982). Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. Am J Physiol Endocrinol Metab 242, E25E32.
  • Roach PJ (2002). Glycogen and its metabolism. Curr Mol Med 2, 101120.
  • Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E & Wolfe RR (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab 265, E380E391.
  • Rose AJ & Richter EA (2005). Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology (Bethesda) 20, 260270.
  • Sakamoto K & Holman GD (2008). Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab 295, E29E37.
  • Sjoberg KA, Rattigan S, Hiscock N, Richter EA & Kiens B (2011). A new method to study changes in microvascular blood volume in muscle and adipose tissue: real-time imaging in humans and rat. Am J Physiol Heart Circ Physiol 301, H450H458.
  • Thong FS, Derave W, Urso B, Kiens B & Richter EA (2003). Prior exercise increases basal and insulin-induced p38 mitogen-activated protein kinase phosphorylation in human skeletal muscle. J Appl Physiol 94, 23372341.
  • Treebak JT, Birk JB, Hansen BF, Olsen GS & Wojtaszewski JF (2009). A-769662 activates AMPK beta1-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle. Am J Physiol Cell Physiol 297, C1041C1052.
  • Watt MJ, Howlett KF, Febbraio MA, Spriet LL & Hargreaves M (2001). Adrenaline increases skeletal muscle glycogenolysis, pyruvate dehydrogenase activation and carbohydrate oxidation during moderate exercise in humans. J Physiol 534, 269278.
  • Wojtaszewski JF & Richter EA (2006). Effects of acute exercise and training on insulin action and sensitivity: focus on molecular mechanisms in muscle. Essays Biochem 42, 3146.
  • Wright DC, Geiger PC, Holloszy JO & Han DH (2005). Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle. Am J Physiol Endocrinol Metab 288, E1062E1066.
  • Wright DC, Hucker KA, Holloszy JO & Han DH (2004). Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes 53, 330335.
  • Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB, Wojtaszewski JF, Hirshman MF, Virkamaki A, Goodyear LJ, Kahn CR & Kahn BB (2000). Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 6, 924928.