SEARCH

SEARCH BY CITATION

References

  • Bakhramov A, Hartley SA, Salter KJ & Kozlowski RZ (1996). Contractile agonists preferentially activate Cl over K+ currents in arterial myocytes. Biochem Biophys Res Commun 227, 168175.
  • Bonnet S, Belus A, Hyvelin JM, Roux E, Marthan R & Savineau JP (2001). Effect of chronic hypoxia on agonist-induced tone and calcium signaling in rat pulmonary artery. Am J Physiol Lung Cell Mol Physiol 281, L193201.
  • Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O & Galietta LJ (2008). TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322, 590594.
  • Chipperfield AR & Harper AA (2000). Chloride in smooth muscle. Prog Biophys Mol Biol 74, 175221.
  • Cogolludo A, Moreno L & Villamor E (2007). Mechanisms controlling vascular tone in pulmonary arterial hypertension: implications for vasodilator therapy. Pharmacology 79, 6575.
  • Criddle DN, de Moura RS, Greenwood IA & Large WA (1997). Inhibitory action of niflumic acid on noradrenaline- and 5-hydroxytryptamine-induced pressor responses in the isolated mesenteric vascular bed of the rat. Br J Pharmacol 120, 813818.
  • Dai YP, Bongalon S, Hatton WJ, Hume JR & Yamboliev IA (2005). ClC-3 chloride channel is upregulated by hypertrophy and inflammation in rat and canine pulmonary artery. Br J Pharmacol 145, 514.
  • de Frutos S, Diaz JM, Nitta CH, Sherpa ML & Bosc LV (2011). Endothelin-1 contributes to increased NFATc3 activation by chronic hypoxia in pulmonary arteries. Am J Physiol Cell Physiol 301, C441450.
  • Drummond GB (2009). Reporting ethical matters in The Journal of Physiology: standards and advice. J Physiol 587, 713719.
  • Ducret T, El Arrouchi J, Courtois A, Quignard JF, Marthan R & Savineau JP (2010). Stretch-activated channels in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats. Cell Calcium 48, 251259.
  • Greenwood IA, Ledoux J, Sanguinetti A, Perrino BA & Leblanc N (2004). Calcineurin Aα but not Aβ augments ICl(Ca) in rabbit pulmonary artery smooth muscle cells. J Biol Chem 279, 3883038837.
  • Guibert C, Marthan R & Savineau JP (1997). Oscillatory Cl current induced by angiotensin II in rat pulmonary arterial myocytes: Ca2+ dependence and physiological implication. Cell Calcium 21, 421429.
  • Hartzell C, Putzier I & Arreola J (2005). Calcium-activated chloride channels. Annu Rev Physiol 67, 719758.
  • Homma N, Nagaoka T, Morio Y, Ota H, Gebb SA, Karoor V, McMurtry IF & Oka M (2007). Endothelin-1 and serotonin are involved in activation of RhoA/Rho kinase signaling in the chronically hypoxic hypertensive rat pulmonary circulation. J Cardiovasc Pharmacol 50, 697702.
  • Karamsetty VS, Kane KA & Wadsworth RM (1995). The effects of chronic hypoxia on the pharmacological responsiveness of the pulmonary artery. Pharmacol Ther 68, 233246.
  • Klockner U & Isenberg G (1991). Endothelin depolarizes myocytes from porcine coronary and human mesenteric arteries through a Ca-activated chloride current. Pflugers Arch 418, 168175.
  • Kuruma A & Hartzell HC (2000). Bimodal control of a Ca2+-activated Cl channel by different Ca2+ signals. J Gen Physiol 115, 5980.
  • Lamb FS & Barna TJ (1998). Chloride ion currents contribute functionally to norepinephrine-induced vascular contraction. Am J Physiol Heart Circ Physiol 275, H151160.
  • Large WA & Wang Q (1996). Characteristics and physiological role of the Ca2+-activated Cl conductance in smooth muscle. Am J Physiol Cell Physiol 271, C435454.
  • Leblanc N, Ledoux J, Saleh S, Sanguinetti A, Angermann J, O’Driscoll K, Britton F, Perrino BA & Greenwood IA (2005). Regulation of calcium-activated chloride channels in smooth muscle cells: a complex picture is emerging. Can J Physiol Pharmacol 83, 541556.
  • Ledoux J, Greenwood I, Villeneuve LR & Leblanc N (2003). Modulation of Ca2+-dependent Cl channels by calcineurin in rabbit coronary arterial myocytes. J Physiol 552, 701714.
  • Liang W, Ray JB, He JZ, Backx PH & Ward ME (2009). Regulation of proliferation and membrane potential by chloride currents in rat pulmonary artery smooth muscle cells. Hypertension 54, 286293.
  • Lin MJ, Leung GP, Zhang WM, Yang XR, Yip KP, Tse CM & Sham JSK (2004). Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95, 496505.
  • Liu JQ, Zelko IN, Erbynn EM, Sham JSK & Folz RJ (2006). Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol 290, L210.
  • MacLean MR & Dempsie Y (2009). Serotonin and pulmonary hypertension – from bench to bedside? Curr Opin Pharmacol 9, 281286.
  • MacLean MR, Sweeney G, Baird M, McCulloch KM, Houslay M & Morecroft I (1996). 5-Hydroxytryptamine receptors mediating vasoconstriction in pulmonary arteries from control and pulmonary hypertensive rats. Br J Pharmacol 119, 917930.
  • Manoury B, Tamuleviciute A & Tammaro P (2010). TMEM16A/anoctamin 1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells. J Physiol 588, 23052314.
  • Moudgil R, Michelakis ED & Archer SL (2006). The role of K+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Microcirculation 13, 615632.
  • Nakazawa H, Hori M, Murata T, Ozaki H & Karaki H (2001). Contribution of chloride channel activation to the elevated muscular tone of the pulmonary artery in monocrotaline-induced pulmonary hypertensive rats. Jpn J Pharmacol 86, 310315.
  • Namkung W, Phuan PW & Verkman AS (2011). TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem 286, 23652374.
  • Oriowo MA (2004). Chloride channels and α1-adrenoceptor-mediated pulmonary artery smooth muscle contraction: effect of pulmonary hypertension. Eur J Pharmacol 506, 157163.
  • Oriowo MA, Oommen E & Khan I (2011). Hyperthyroidism enhances 5-HT-induced contraction of the rat pulmonary artery: role of calcium-activated chloride channel activation. Eur J Pharmacol 669, 108114.
  • Platoshyn O, Golovina VA, Bailey CL, Limsuwan A, Krick S, Juhaszova M, Seiden JE, Rubin LJ & Yuan JX (2000). Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation. Am J Physiol Cell Physiol 279, C15401549.
  • Platoshyn O, Yu Y, Golovina VA, McDaniel SS, Krick S, Li L, Wang JY, Rubin LJ & Yuan JX (2001). Chronic hypoxia decreases KV channel expression and function in pulmonary artery myocytes. Am J Physiol Lung Cell Mol Physiol 280, L801812.
  • Pozeg ZI, Michelakis ED, McMurtry MS, Thebaud B, Wu XC, Dyck JR, Hashimoto K, Wang S, Moudgil R, Harry G, Sultanian R, Koshal A & Archer SL (2003). In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 107, 20372044.
  • Rodat L, Savineau JP, Marthan R & Guibert C (2007). Effect of chronic hypoxia on voltage-independent calcium influx activated by 5-HT in rat intrapulmonary arteries. Pflugers Arch 454, 4151.
  • Schroeder BC, Cheng T, Jan YN & Jan LY (2008). Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134, 10191029.
  • Shimoda LA, Sham JSK, Shimoda TH & Sylvester JT (2000). L-type Ca2+ channels, resting [Ca2+]i, and ET-1-induced responses in chronically hypoxic pulmonary myocytes. Am J Physiol Lung Cell Mol Physiol 279, L884894.
  • Shimoda LA, Sylvester JT & Sham JSK (1999). Chronic hypoxia alters effects of endothelin and angiotensin on K+ currents in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 277, L431439.
  • Stenmark KR, Fagan KA & Frid MG (2006). Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99, 675691.
  • Thorneloe KS & Nelson MT (2005). Ion channels in smooth muscle: regulators of intracellular calcium and contractility. Can J Physiol Pharmacol 83, 215242.
  • Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL & Shimoda LA (2006). Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98, 15281537.
  • Wang Q, Wang YX, Yu M & Kotlikoff MI (1997). Ca2+-activated Cl currents are activated by metabolic inhibition in rat pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 273, C520530.
  • Weir EK & Olschewski A (2006). Role of ion channels in acute and chronic responses of the pulmonary vasculature to hypoxia. Cardiovasc Res 71, 630641.
  • Wellman GC & Nelson MT (2003). Signaling between SR and plasmalemma in smooth muscle: sparks and the activation of Ca2+-sensitive ion channels. Cell Calcium 34, 211229.
  • Xiao Q, Yu K, Perez-Cornejo P, Cui Y, Arreola J & Hartzell HC (2011). Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc Natl Acad Sci U S A 108, 88918896.
  • Yang XR, Lin AH, Hughes JM, Flavahan NA, Cao YN, Liedtke W & Sham JSK (2012). Upregulation of osmo-mechanosensitive TRPV4 channel facilitates chronic hypoxia induced myogenic tone and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 302, L555565.
  • Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK & Oh U (2008). TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 12101215.
  • Yang Z, Zhang Z, Xu Y, Li Y & Ye T (2006). Relationship of intracellular free Ca2+ concentration and calcium-activated chloride channels of pulmonary artery smooth muscle cells in rats under hypoxic conditions. J Huazhong Univ Sci Technolog Med Sci 26, 172174, 191.
  • Yuan XJ (1997). Role of calcium-activated chloride current in regulating pulmonary vasomotor tone. Am J Physiol Lung Cell Mol Physiol 272, L959968.