SEARCH

SEARCH BY CITATION

References

  • Ai Z, Fischer A, Spray DC, Brown AM & Fishman GI (2000). Wnt-1 regulation of connexin43 in cardiac myocytes. J Clin Invest 105, 161171.
  • Aisagbonhi O, Rai M, Ryzhov S, Atria N, Feoktistov I & Hatzopoulos AK (2011). Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech 4, 469483.
  • Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, Schneider H, Sadowski A, Riener MO, MacDougald OA, Distler O, Schett G & Distler JH (2012). Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 3, 735.
  • Antos CL, McKinsey TA, Frey N, Kutschke W, McAnally J, Shelton JM, Richardson JA, Hill JA & Olson EN (2002). Activated glycogen synthase-3 β suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 99, 907912.
  • Ashton-Rickardt PG, Dunlop MG, Nakamura Y, Morris RG, Purdie CA, Steel CM, Evans HJ, Bird CC & Wyllie AH (1989). High frequency of APC loss in sporadic colorectal carcinoma due to breaks clustered in 5q21–22. Oncogene 4, 11691174.
  • Ballon DR, Flanary PL, Gladue DP, Konopka JB, Dohlman HG & Thorner J (2006). DEP-domain-mediated regulation of GPCR signaling responses. Cell 126, 10791093.
  • Barandon L, Casassus F, Leroux L, Moreau C, Allieres C, Lamaziere JM, Dufourcq P, Couffinhal T & Duplaa C (2011). Secreted frizzled-related protein-1 improves postinfarction scar formation through a modulation of inflammatory response. Arterioscl Thromb Vasc Biol 31, e8087.
  • Barandon L, Couffinhal T, Ezan J, Dufourcq P, Costet P, Alzieu P, Leroux L, Moreau C, Dare D & Duplaa C (2003). Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation 108, 22822289.
  • Barandon L, Dufourcq P, Costet P, Moreau C, Allieres C, Daret D, Dos Santos P, Daniel Lamaziere JM, Couffinhal T & Duplaa C (2005). Involvement of FrzA/sFRP-1 and the Wnt/frizzled pathway in ischemic preconditioning. Circ Res 96, 12991306.
  • Baurand A, Zelarayan L, Betney R, Gehrke C, Dunger S, Noack C, Busjahn A, Huelsken J, Taketo MM, Birchmeier W, Dietz R & Bergmann MW (2007). Beta-catenin downregulation is required for adaptive cardiac remodeling. Circ Res 100, 13531362.
  • Benito B, Gay-Jordi G, Serrano-Mollar A, Guasch E, Shi Y, Tardif JC, Brugada J, Nattel S & Mont L (2011). Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation 123, 1322.
  • Bergmann MW (2010). WNT signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development. Circ Res 107, 11981208.
  • Blankesteijn WM, Essers-Janssen YP, Ulrich MM & Smits JF (1996). Increased expression of a homologue of drosophila tissue polarity gene “frizzled” in left ventricular hypertrophy in the rat, as identified by subtractive hybridization. J Mol Cell Cardiol 28, 11871191.
  • Blankesteijn WM, Essers-Janssen YP, Verluyten MJ, Daemen MJ & Smits JF (1997). A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat Med 3, 541544.
  • Blankesteijn WM, van de Schans VA, ter Horst P & Smits JF (2008). The Wnt/frizzled/GSK-3 β pathway: a novel therapeutic target for cardiac hypertrophy. Trends Pharmacol Sci 29, 175180.
  • Brade T, Manner J & Kuhl M (2006). The role of Wnt signalling in cardiac development and tissue remodelling in the mature heart. Cardiovasc Res 72, 198209.
  • Brennan K, Gonzalez-Sancho JM, Castelo-Soccio LA, Howe LR & Brown AM (2004). Truncated mutants of the putative Wnt receptor LRP6/Arrow can stabilize β-catenin independently of Frizzled proteins. Oncogene 23, 48734884.
  • Burstein B, Comtois P, Michael G, Nishida K, Villeneuve L, Yeh YH & Nattel S (2009). Changes in connexin expression and the atrial fibrillation substrate in congestive heart failure. Circ Res 105, 12131222.
  • Caricasole A, Ferraro T, Iacovelli L, Barletta E, Caruso A, Melchiorri D, Terstappen GC & Nicoletti F (2003). Functional characterization of WNT7A signaling in PC12 cells: interaction with A FZD5·LRP6 receptor complex and modulation by Dickkopf proteins. J Biol Chem 278, 3702437031.
  • Carthy JM, Garmaroudi FS, Luo Z & McManus BM (2011). Wnt3a induces myofibroblast differentiation by upregulating TGF-β signaling through SMAD2 in a β-catenin-dependent manner. PloS ONE 6, e19809.
  • Cerutti C, Kurdi M, Bricca G, Hodroj W, Paultre C, Randon J & Gustin MP (2006). Transcriptional alterations in the left ventricle of three hypertensive rat models. Physiol Genomics 27, 295308.
  • Chen L, Wu Q, Guo F, Xia B & Zuo J (2004). Expression of Dishevelled-1 in wound healing after acute myocardial infarction: possible involvement in myofibroblast proliferation and migration. J Cell Mol Med 8, 257264.
  • Chen S, Guttridge DC, You Z, Zhang Z, Fribley A, Mayo MW, Kitajewski J & Wang CY (2001). Wnt-1 signaling inhibits apoptosis by activating β-catenin/T cell factor-mediated transcription. J Cell Biol 152, 8796.
  • Chen W, ten Berge D, Brown J, Ahn S, Hu LA, Miller WE, Caron MG, Barak LS, Nusse R & Lefkowitz RJ (2003). Dishevelled 2 recruits β-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301, 13911394.
  • Chen X, Shevtsov SP, Hsich E, Cui L, Haq S, Aronovitz M, Kerkela R, Molkentin JD, Liao R, Salomon RN, Patten R & Force T (2006). The β-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy. Mol Cell Biol 26, 44624473.
  • Choukroun G, Hajjar R, Fry S, del Monte F, Haq S, Guerrero JL, Picard M, Rosenzweig A & Force T (1999). Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH2-terminal kinases. J Clin Invest 104, 391398.
  • Cingolani OH (2007). Cardiac hypertrophy and the Wnt/Frizzled pathway. Hypertension 49, 427428.
  • Colston JT, de la Rosa SD, Koehler M, Gonzales K, Mestril R, Freeman GL, Bailey SR & Chandrasekar B (2007). Wnt-induced secreted protein-1 is a prohypertrophic and profibrotic growth factor. Am J Physiol Heart Circ Physiol 293, H18391846.
  • Dann CE, Hsieh JC, Rattner A, Sharma D, Nathans J & Leahy DJ (2001). Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412, 8690.
  • Daskalopoulos EP, Janssen BJ & Blankesteijn WM (2012). Myofibroblasts in the infarct area: concepts and challenges. Microsc Microanal 18, 3549.
  • Dawson K, Qi XY & Nattel S (2012). Changes in wnt-frizzled system in an AF substrate [abstract]. Circulation 126, A18958.
  • Deardorff MA, Tan C, Conrad LJ & Klein PS (1998). Frizzled-8 is expressed in the Spemann organizer and plays a role in early morphogenesis. Development 125, 26872700.
  • Deardorff MA, Tan C, Saint-Jeannet JP & Klein PS (2001). A role for frizzled 3 in neural crest development. Development 128, 36553663.
  • Deyell MW, Andrade JG, McManus BM & Leipsic J (2011). The other side of arrhythmogenic right ventricular cardiomyopathy. Can J Cardiol 27, 263.e213266.
  • Diedrichs H, Chi M, Boelck B, Mehlhorn U & Schwinger RH (2004). Increased regulatory activity of the calcineurin/NFAT pathway in human heart failure. Eur J Heart Fail 6, 39.
  • Duan J, Gherghe C, Liu D, Hamlett E, Srikantha L, Rodgers L, Regan JN, Rojas M, Willis M, Leask A, Majesky M & Deb A (2012). Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBOJ 31, 429442.
  • Dufourcq P, Couffinhal T, Ezan J, Barandon L, Moreau C, Daret D & Duplaa C (2002). FrzA, a secreted frizzled related protein, induced angiogenic response. Circulation 106, 30973103.
  • Dupont E, Matsushita T, Kaba RA, Vozzi C, Coppen SR, Khan N, Kaprielian R, Yacoub MH & Severs NJ (2001). Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33, 359371.
  • Ellinor PT, Lunetta KL, Albert CM, Glazer NL, Ritchie MD, Smith AV, Arking DE, Muller-Nurasyid M, Krijthe BP, Lubitz SA, Bis JC, Chung MK, Dorr M, Ozaki K, Roberts JD, Smith JG, Pfeufer A, Sinner MF, Lohman K, Ding J, Smith NL, Smith JD, Rienstra M, Rice KM, Van Wagoner DR, Magnani JW, Wakili R, Clauss S, Rotter JI, Steinbeck G, Launer LJ, Davies RW, Borkovich M, Harris TB, Lin H, Volker U, Volzke H, Milan DJ, Hofman A, Boerwinkle E, Chen LY, Soliman EZ, Voight BF, Li G, Chakravarti A, Kubo M, Tedrow UB, Rose LM, Ridker PM, Conen D, Tsunoda T, Furukawa T, Sotoodehnia N, Xu S, Kamatani N, Levy D, Nakamura Y, Parvez B, Mahida S, Furie KL, Rosand J, Muhammad R, Psaty BM, Meitinger T, Perz S, Wichmann HE, Witteman JC, Kao WH, Kathiresan S, Roden DM, Uitterlinden AG, Rivadeneira F, McKnight B, Sjogren M, Newman AB, Liu Y, Gollob MH, Melander O, Tanaka T, Stricker BH, Felix SB, Alonso A, Darbar D, Barnard J, Chasman DI, Heckbert SR, Benjamin EJ, Gudnason V & Kaab S (2012). Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet 44, 670675.
  • Esteve P & Bovolenta P (2010). The advantages and disadvantages of sfrp1 and sfrp2 expression in pathological events. Tohoku J Exp Med 221, 1117.
  • Fear MW, Kelsell DP, Spurr NK & Barnes MR (2000). Wnt-16a, a novel Wnt-16 isoform, which shows differential expression in adult human tissues. Biochem Biophys Res Commun 278, 814820.
  • Feigin ME & Malbon CC (2007). RGS19 regulates Wnt-β-catenin signaling through inactivation of Gαo. J Cell Sci 120, 34043414.
  • Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M & Harmar AJ (2005). International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 57, 279288.
  • Fredriksson R, Lagerstrom MC, Lundin LG & Schioth HB (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63, 12561272.
  • Frey N, Katus HA, Olson EN & Hill JA (2004). Hypertrophy of the heart: a new therapeutic target Circulation 109, 15801589.
  • Fuerer C, Habib SJ & Nusse R (2010). A study on the interactions between heparan sulfate proteoglycans and Wnt proteins. Dev Dynam 239, 184190.
  • Fujio Y, Matsuda T, Oshima Y, Maeda M, Mohri T, Ito T, Takatani T, Hirata M, Nakaoka Y, Kimura R, Kishimoto T & Azuma J (2004). Signals through gp130 upregulate Wnt5a and contribute to cell adhesion in cardiac myocytes. FEBS Lett 573, 202206.
  • Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH, Matsui T, Rosenzweig A, Taylor WG, Rubin JS, Perrella MA & Lee ME (2001). Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem 276, 1747917483.
  • Gao C & Chen YG (2010). Dishevelled: the hub of Wnt signaling. Cell Signal 22, 717727.
  • Garcia-Gras E, Lombardi R, Giocondo MJ, Willerson JT, Schneider MD, Khoury DS & Marian AJ (2006). Suppression of canonical Wnt/β-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest 116, 20122021.
  • Gazit A, Yaniv A, Bafico A, Pramila T, Igarashi M, Kitajewski J & Aaronson SA (1999). Human frizzled 1 interacts with transforming Wnts to transduce a TCF dependent transcriptional response. Oncogene 18, 59595966.
  • Gessert S & Kuhl M (2010). The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ Res 107, 186199.
  • Giles RH, van Es JH & Clevers H (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653, 124.
  • Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C & Niehrs C (1998). Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357362.
  • Golan T, Yaniv A, Bafico A, Liu G & Gazit A (2004). The human Frizzled 6 (HFz6) acts as a negative regulator of the canonical Wnt·β-catenin signaling cascade. J Biol Chem 279, 1487914888.
  • Goliasch G, Wiesbauer F, Kastl SP, Katsaros KM, Blessberger H, Maurer G, Schillinger M, Huber K, Wojta J & Speidl WS (2012). Premature myocardial infarction is associated with low serum levels of Wnt-1. Atherosclerosis 222, 251256.
  • Gollob MH, Blier L, Brugada R, Champagne J, Chauhan V, Connors S, Gardner M, Green MS, Gow R, Hamilton R, Harris L, Healey JS, Hodgkinson K, Honeywell C, Kantoch M, Kirsh J, Krahn A, Mullen M, Parkash R, Redfearn D, Rutberg J, Sanatani S & Woo A (2011). Recommendations for the use of genetic testing in the clinical evaluation of inherited cardiac arrhythmias associated with sudden cardiac death: Canadian Cardiovascular Society/Canadian Heart Rhythm Society joint position paper. Can J Cardiol 27, 232245.
  • Grigoryan T, Wend P, Klaus A & Birchmeier W (2008). Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of β-catenin in mice. Genes Dev 22, 23082341.
  • Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M, Sargeant L, Krapcho K, Wolff E, Burt R, Hughes JP, Warrington J, McPherson J, Wasmuth J, Le Paslier D, Abderrahim H, Cohen D, Leppert M & White R (1991). Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589600.
  • Habas R, Kato Y & He X (2001). Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107, 843854.
  • Hahn JY, Cho HJ, Bae JW, Yuk HS, Kim KI, Park KW, Koo BK, Chae IH, Shin CS, Oh BH, Choi YS, Park YB & Kim HS (2006). β-Catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts. J Biol Chem 281, 3097930989.
  • Haq S, Choukroun G, Kang ZB, Ranu H, Matsui T, Rosenzweig A, Molkentin JD, Alessandrini A, Woodgett J, Hajjar R, Michael A & Force T (2000). Glycogen synthase kinase-3β is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol 151, 117130.
  • Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T & Molkentin JD (2001). Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103, 670677.
  • Haq S, Michael A, Andreucci M, Bhattacharya K, Dotto P, Walters B, Woodgett J, Kilter H & Force T (2003). Stabilization of β-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci U S A 100, 46104615.
  • Hardiman G, Kastelein RA & Bazan JF (1997). Isolation, characterization and chromosomal localization of human WNT10B. Cytogenet Cell Genet 77, 278282.
  • He W, Dai C, Li Y, Zeng G, Monga SP & Liu Y (2009). Wnt/β-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol 20, 765776.
  • He W, Zhang L, Ni A, Zhang Z, Mirotsou M, Mao L, Pratt RE & Dzau VJ (2010). Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction. Proc Natl Acad Sci U S A 107, 2111021115.
  • He X, Semenov M, Tamai K & Zeng X (2004). LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131, 16631677.
  • Henderson WR Jr, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B, Borok Z, Knight DA & Kahn M (2010). Inhibition of Wnt/β-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A 107, 1430914314.
  • Hendrickx M & Leyns L (2008). Non-conventional Frizzled ligands and Wnt receptors. Dev Growth Differ 50, 229243.
  • Hirotani S, Zhai P, Tomita H, Galeotti J, Marquez JP, Gao S, Hong C, Yatani A, Avila J & Sadoshima J (2007). Inhibition of glycogen synthase kinase 3β during heart failure is protective. Circ Res 101, 11641174.
  • Hollinger S & Hepler JR (2002). Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54, 527559.
  • Holmen SL, Salic A, Zylstra CR, Kirschner MW & Williams BO (2002). A novel set of Wnt-Frizzled fusion proteins identifies receptor components that activate β-catenin-dependent signaling. J Biol Chem 277, 3472734735.
  • Hsieh JC, Rattner A, Smallwood PM & Nathans J (1999). Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc Natl Acad Sci U S A 96, 35463551.
  • Jansen JA, van Veen TA, de Jong S, van der Nagel R, van Stuijvenberg L, Driessen H, Labzowski R, Oefner CM, Bosch AA, Nguyen TQ, Goldschmeding R, Vos MA, de Bakker JM & van Rijen HV (2012). Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity. Circ Arrhythm Electrophysiol 5, 380390.
  • Ji YR, Kim MO, Kim SH, Yu DH, Shin MJ, Kim HJ, Yuh HS, Bae KB, Kim JY, Park HD, Lee SG, Hyun BH & Ryoo ZY (2010). Effects of regulator of G protein signaling 19 (RGS19) on heart development and function. J Biol Chem 285, 2862728634.
  • Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN & Sollott SJ (2004). Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113, 15351549.
  • Kanazawa A, Tsukada S, Kamiyama M, Yanagimoto T, Nakajima M & Maeda S (2005). Wnt5b partially inhibits canonical Wnt/β-catenin signaling pathway and promotes adipogenesis in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 330, 505510.
  • Kang PM & Izumo S (2000). Apoptosis and heart failure: a critical review of the literature. Circ Res 86, 11071113.
  • Karasawa T, Yokokura H, Kitajewski J & Lombroso PJ (2002). Frizzled-9 is activated by Wnt-2 and functions in Wnt/β-catenin signaling. J Biol Chem 277, 3747937486.
  • Katanaev VL, Ponzielli R, Semeriva M & Tomlinson A (2005). Trimeric G protein-dependent frizzled signaling in Drosophila. Cell 120, 111122.
  • Kikuchi A, Yamamoto H, Sato A & Matsumoto S (2011). New insights into the mechanism of Wnt signaling pathway activation. Int Rev Cell Mol Biol 291, 2171.
  • Kim GH, Her JH & Han JK (2008). Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. J Cell Biol 182, 10731082.
  • Klaus A & Birchmeier W (2008). Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8, 387398.
  • Kobayashi K, Luo M, Zhang Y, Wilkes DC, Ge G, Grieskamp T, Yamada C, Liu TC, Huang G, Basson CT, Kispert A, Greenspan DS & Sato TN (2009). Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol 11, 4655.
  • Kohn AD & Moon RT (2005). Wnt and calcium signaling: β-catenin-independent pathways. Cell Calcium 38, 439446.
  • Komekado H, Yamamoto H, Chiba T & Kikuchi A (2007). Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells 12, 521534.
  • Koval A, Purvanov V, Egger-Adam D & Katanaev VL (2011). Yellow submarine of the Wnt/Frizzled signaling: submerging from the G protein harbor to the targets. Biochem Pharmacol 82, 13111319.
  • Krupnik VE, Sharp JD, Jiang C, Robison K, Chickering TW, Amaravadi L, Brown DE, Guyot D, Mays G, Leiby K, Chang B, Duong T, Goodearl AD, Gearing DP, Sokol SY & McCarthy SA (1999). Functional and structural diversity of the human Dickkopf gene family. Gene 238, 301313.
  • Kuhl M, Sheldahl LC, Malbon CC & Moon RT (2000). Ca2+/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem 275, 1270112711.
  • Kurayoshi M, Yamamoto H, Izumi S & Kikuchi A (2007). Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem J 402, 515523.
  • Kwon C, Arnold J, Hsiao EC, Taketo MM, Conklin BR & Srivastava D (2007). Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci U S A 104, 1089410899.
  • Laeremans H, Hackeng TM, van Zandvoort MA, Thijssen VL, Janssen BJ, Ottenheijm HC, Smits JF & Blankesteijn WM (2011). Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation 124, 16261635.
  • Laeremans H, Rensen SS, Ottenheijm HC, Smits JF & Blankesteijn WM (2010). Wnt/frizzled signalling modulates the migration and differentiation of immortalized cardiac fibroblasts. Cardiovasc Res 87, 514523.
  • LaFramboise WA, Bombach KL, Dhir RJ, Muha N, Cullen RF, Pogozelski AR, Turk D, George JD, Guthrie RD & Magovern JA (2005). Molecular dynamics of the compensatory response to myocardial infarct. J Mol Cell Cardiol 38, 103117.
  • Lam AP & Gottardi CJ (2011). β-Catenin signaling: a novel mediator of fibrosis and potential therapeutic target. Curr Opin Rheumatol 23, 562567.
  • Leask A (2010). Potential therapeutic targets for cardiac fibrosis: TGFβ, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 106, 16751680.
  • Li L, Yuan H, Xie W, Mao J, Caruso AM, McMahon A, Sussman DJ & Wu D (1999). Dishevelled proteins lead to two signaling pathways. Regulation of LEF-1 and c-Jun N-terminal kinase in mammalian cells. J Biol Chem 274, 129134.
  • Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ & Palecek SP (2012). Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109, E18481857.
  • Liang Q, Bueno OF, Wilkins BJ, Kuan CY, Xia Y & Molkentin JD (2003). c-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk with calcineurin-NFAT signaling. EMBO J 22, 50795089.
  • Liu G, Bafico A, Harris VK & Aaronson SA (2003). A novel mechanism for Wnt activation of canonical signaling through the LRP6 receptor. Mol Cell Biol 23, 58255835.
  • Liu T, DeCostanzo AJ, Liu X, Wang H, Hallagan S, Moon RT & Malbon CC (2001). G protein signaling from activated rat frizzled-1 to the β-catenin-Lef-Tcf pathway. Science 292, 17181722.
  • Liu T, Liu X, Wang H, Moon RT & Malbon CC (1999). Activation of rat frizzled-1 promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via pathways that require Gαq and Gαo function. J Biol Chem 274, 3353933544.
  • Lombardi R, Dong J, Rodriguez G, Bell A, Leung TK, Schwartz RJ, Willerson JT, Brugada R & Marian AJ (2009). Genetic fate mapping identifies second heart field progenitor cells as a source of adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ Res 104, 10761084.
  • Lombardi R & Marian AJ (2011). Molecular genetics and pathogenesis of arrhythmogenic right ventricular cardiomyopathy: a disease of cardiac stem cells. Pediatr Cardiol 32, 360365.
  • Lopez-Rios J, Esteve P, Ruiz JM & Bovolenta P (2008). The Netrin-related domain of Sfrp1 interacts with Wnt ligands and antagonizes their activity in the anterior neural plate. Neural Dev 3, 19.
  • Luckey SW, Mansoori J, Fair K, Antos CL, Olson EN & Leinwand LA (2007). Blocking cardiac growth in hypertrophic cardiomyopathy induces cardiac dysfunction and decreased survival only in males. Am J Physiol Heart Circ Physiol 292, H838845.
  • Lyons JP, Mueller UW, Ji H, Everett C, Fang X, Hsieh JC, Barth AM & McCrea PD (2004). Wnt-4 activates the canonical β-catenin-mediated Wnt pathway and binds Frizzled-6 CRD: functional implications of Wnt/β-catenin activity in kidney epithelial cells. Exp Cell Res 298, 369387.
  • Malekar P, Hagenmueller M, Anyanwu A, Buss S, Streit MR, Weiss CS, Wolf D, Riffel J, Bauer A, Katus HA & Hardt SE (2010). Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension 55, 939945.
  • Malinauskas T, Aricescu AR, Lu W, Siebold C & Jones EY (2011). Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. Nat Struct Mol Biol 18, 886893.
  • Mann DL (2003). Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol 65, 81101.
  • Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, Delius H, Hoppe D, Stannek P, Walter C, Glinka A & Niehrs C (2002). Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature 417, 664667.
  • Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A & Niehrs C (2001). LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411, 321325.
  • Matsuda T, Zhai P, Maejima Y, Hong C, Gao S, Tian B, Goto K, Takagi H, Tamamori-Adachi M, Kitajima S & Sadoshima J (2008). Distinct roles of GSK-3α and GSK-3β phosphorylation in the heart under pressure overload. Proc Natl Acad Sci U S A 105, 2090020905.
  • Matsushima K, Suyama T, Takenaka C, Nishishita N, Ikeda K, Ikada Y, Sawa Y, Jakt LM, Mori H & Kawamata S (2010). Secreted frizzled related protein 4 reduces fibrosis scar size and ameliorates cardiac function after ischemic injury. Tissue Eng Part A 16, 33293341.
  • Mayorga ME & Penn MS (2012). miR-145 is differentially regulated by TGF-β1 and ischaemia and targets Disabled-2 expression and wnt/β-catenin activity. J Cell Mol Med 16, 11061113.
  • McKinsey TA & Kass DA (2007). Small-molecule therapies for cardiac hypertrophy: moving beneath the cell surface. Nat Rev Drug Discov 6, 617635.
  • Medina A, Reintsch W & Steinbeisser H (2000). Xenopus frizzled 7 can act in canonical and non-canonical Wnt signaling pathways: implications on early patterning and morphogenesis. Mech Dev 92, 227237.
  • Medina A & Steinbeisser H (2000). Interaction of Frizzled 7 and Dishevelled in Xenopus. Dev Dyn 218, 671680.
  • Meijer L, Flajolet M & Greengard P (2004). Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 25, 471480.
  • Melenovsky V, Benes J, Skaroupkova P, Sedmera D, Strnad H, Kolar M, Vlcek C, Petrak J, Benes J Jr, Papousek F, Oliyarnyk O, Kazdova L & Cervenka L (2011). Metabolic characterization of volume overload heart failure due to aorto-caval fistula in rats. Mol Cell Biochem 354, 8396.
  • Michael A, Haq S, Chen X, Hsich E, Cui L, Walters B, Shao Z, Bhattacharya K, Kilter H, Huggins G, Andreucci M, Periasamy M, Solomon RN, Liao R, Patten R, Molkentin JD & Force T (2004). Glycogen synthase kinase-3β regulates growth, calcium homeostasis, and diastolic function in the heart. J Biol Chem 279, 2138321393.
  • Mikels AJ & Nusse R (2006). Purified Wnt5a protein activates or inhibits β-catenin-TCF signaling depending on receptor context. PLoS Biol 4, e115.
  • Monaghan AP, Kioschis P, Wu W, Zuniga A, Bock D, Poustka A, Delius H & Niehrs C (1999). Dickkopf genes are co-ordinately expressed in mesodermal lineages. Mech Dev 87, 4556.
  • Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF & Sadoshima J (2000). The Akt-glycogen synthase kinase 3β pathway regulates transcription of atrial natriuretic factor induced by β-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem 275, 1446614475.
  • Murphy E & Steenbergen C (2005). Inhibition of GSK-3β as a target for cardioprotection: the importance of timing, location, duration and degree of inhibition. Expert Opin Ther Targets 9, 447456.
  • Murphy E & Steenbergen C (2008). Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88, 581609.
  • Nagy, II, Railo A, Rapila R, Hast T, Sormunen R, Tavi P, Rasanen J & Vainio SJ (2010). Wnt-11 signalling controls ventricular myocardium development by patterning N-cadherin and β-catenin expression. Cardiovasc Res 85, 100109.
  • Nakamura T, Sano M, Songyang Z & Schneider MD (2003). A Wnt- and β-catenin-dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci U S A 100, 58345839.
  • Nath AK, Krauthammer M, Li P, Davidov E, Butler LC, Copel J, Katajamaa M, Oresic M, Buhimschi I, Buhimschi C, Snyder M & Madri JA (2009). Proteomic-based detection of a protein cluster dysregulated during cardiovascular development identifies biomarkers of congenital heart defects. PloS One 4, e4221.
  • Neumann S, Coudreuse DY, van der Westhuyzen DR, Eckhardt ER, Korswagen HC, Schmitz G & Sprong H (2009). Mammalian Wnt3a is released on lipoprotein particles. Traffic 10, 334343.
  • Nishino Y, Webb IG, Davidson SM, Ahmed AI, Clark JE, Jacquet S, Shah AM, Miura T, Yellon DM, Avkiran M & Marber MS (2008). Glycogen synthase kinase-3 inactivation is not required for ischemic preconditioning or postconditioning in the mouse. Circ Res 103, 307314.
  • Nusse R, van Ooyen A, Cox D, Fung YK & Varmus H (1984). Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307, 131136.
  • Oerlemans MI, Goumans MJ, van Middelaar B, Clevers H, Doevendans PA & Sluijter JP (2010). Active Wnt signaling in response to cardiac injury. Basic Res Cardiol 105, 631641.
  • Oikonomopoulos A, Sereti KI, Conyers F, Bauer M, Liao A, Guan J, Crapps D, Han JK, Dong H, Bayomy AF, Fine GC, Westerman K, Biechele TL, Moon RT, Force T & Liao R (2011). Wnt signaling exerts an antiproliferative effect on adult cardiac progenitor cells through IGFBP3. Circ Res 109, 13631374.
  • Oka T, Xu J & Molkentin JD (2007). Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol 18, 117131.
  • Okino K, Nagai H, Hatta M, Nagahata T, Yoneyama K, Ohta Y, Jin E, Kawanami O, Araki T & Emi M (2003). Up-regulation and overproduction of DVL-1, the human counterpart of the Drosophila dishevelled gene, in cervical squamous cell carcinoma. Oncol Rep 10, 12191223.
  • Onizuka T, Yuasa S, Kusumoto D, Shimoji K, Egashira T, Ohno Y, Kageyama T, Tanaka T, Hattori F, Fujita J, Ieda M, Kimura K, Makino S, Sano M, Kudo A & Fukuda K (2012). Wnt2 accelerates cardiac myocyte differentiation from ES-cell derived mesodermal cells via non-canonical pathway. J Mol Cell Cardiol 52, 650659.
  • Pan WJ, Pang SZ, Huang T, Guo HY, Wu D & Li L (2004). Characterization of function of three domains in dishevelled-1: DEP domain is responsible for membrane translocation of dishevelled-1. Cell Res 14, 324330.
  • Panakova D, Sprong H, Marois E, Thiele C & Eaton S (2005). Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435, 5865.
  • Panakova D, Werdich AA & Macrae CA (2010). Wnt11 patterns a myocardial electrical gradient through regulation of the L-type Ca2+ channel. Nature 466, 874878.
  • Pandur P, Lasche M, Eisenberg LM & Kuhl M (2002). Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418, 636641.
  • Pecina-Slaus N (2010). Wnt signal transduction pathway and apoptosis: a review. Cancer Cell Int 10, 22.
  • Petrich BG, Eloff BC, Lerner DL, Kovacs A, Saffitz JE, Rosenbaum DS & Wang Y (2004). Targeted activation of c-Jun N-terminal kinase in vivo induces restrictive cardiomyopathy and conduction defects. J Biol Chem 279, 1533015338.
  • Planutis K, Planutiene M, Moyer MP, Nguyen AV, Perez CA & Holcombe RF (2007). Regulation of norrin receptor frizzled-4 by Wnt2 in colon-derived cells. BMC Cell Biol 8, 12.
  • Qu J, Zhou J, Yi XP, Dong B, Zheng H, Miller LM, Wang X, Schneider MD & Li F (2007). Cardiac-specific haploinsufficiency of β-catenin attenuates cardiac hypertrophy but enhances fetal gene expression in response to aortic constriction. J Mol Cell Cardiol 43, 319326.
  • Rao TP & Kuhl M (2010). An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 106, 17981806.
  • Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D & Nusse R (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649657.
  • Rohini A, Agrawal N, Koyani CN & Singh R (2010). Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 61, 269280.
  • Rohr S (2012). Arrhythmogenic implications of fibroblast– myocyte interactions. Circ Arrhythm Electrophysiol 5, 442452.
  • Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL & MacDougald OA (2000). Inhibition of adipogenesis by Wnt signaling. Science 289, 950953.
  • Rouleau JL (2011). New and emerging drugs and device therapies for chronic heart failure in patients with systolic ventricular dysfunction. Can J Cardiol 27, 296301.
  • Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munemitsu S & Polakis P (1993). Association of the APC gene product with β-catenin. Science 262, 17311734.
  • Sanada S, Komuro I & Kitakaze M (2011). Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 301, H17231741.
  • Sanbe A, Gulick J, Hanks MC, Liang Q, Osinska H & Robbins J (2003). Reengineering inducible cardiac-specific transgenesis with an attenuated myosin heavy chain promoter. Circ Res 92, 609616.
  • Saraswati S, Alfaro MP, Thorne CA, Atkinson J, Lee E & Young PP (2010). Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling. PloS One 5, e15521.
  • Schneider VA & Mercola M (2001). Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15, 304315.
  • Schuijers J & Clevers H (2012). Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. EMBO J 31, 26852696.
  • Schumann H, Holtz J, Zerkowski HR & Hatzfeld M (2000). Expression of secreted frizzled related proteins 3 and 4 in human ventricular myocardium correlates with apoptosis related gene expression. Cardiovasc Res 45, 720728.
  • Seifert JR & Mlodzik M (2007). Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 8, 126138.
  • Semenov MV, Tamai K, Brott BK, Kuhl M, Sokol S & He X (2001). Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11, 951961.
  • Sen M, Chamorro M, Reifert J, Corr M & Carson DA (2001). Blockade of Wnt-5A/frizzled 5 signaling inhibits rheumatoid synoviocyte activation. Arthritis Rheum 44, 772781.
  • Sheldahl LC, Park M, Malbon CC & Moon RT (1999). Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr Biol 9, 695698.
  • Slusarski DC, Corces VG & Moon RT (1997). Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390, 410413.
  • Smolich BD, McMahon JA, McMahon AP & Papkoff J (1993). Wnt family proteins are secreted and associated with the cell surface. Mol Biol Cell 4, 12671275.
  • Snead AN & Insel PA (2012). Defining the cellular repertoire of GPCRs identifies a profibrotic role for the most highly expressed receptor, protease-activated receptor 1, in cardiac fibroblasts. FASEB J 26, 45404547.
  • Soemedi R, Wilson IJ, Bentham J, Darlay R, Topf A, Zelenika D, Cosgrove C, Setchfield K, Thornborough C, Granados- Riveron J, Blue GM, Breckpot J, Hellens S, Zwolinkski S, Glen E, Mamasoula C, Rahman TJ, Hall D, Rauch A, Devriendt K, Gewillig M, J OS, Winlaw DS, Bu’lock F, Brook JD, Bhattacharya S, Lathrop M, Santibanez-Koref M, Cordell HJ, Goodship JA & Keavney BD (2012). Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet 91, 489501.
  • Stewart S, MacIntyre K, Hole DJ, Capewell S & McMurray JJ (2001). More ‘malignant’ than cancer? Five-year survival following a first admission for heart failure. Eur J Heart Fail 3, 315322.
  • Su F, Overholtzer M, Besser D & Levine AJ (2002). WISP-1 attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase. Genes Dev 16, 4657.
  • Surmann-Schmitt C, Sasaki T, Hattori T, Eitzinger N, Schett G, von der Mark K & Stock M (2012). The Wnt antagonist Wif-1 interacts with CTGF and inhibits CTGF activity. J Cell Physiol 227, 22072216.
  • Sutton MG & Sharpe N (2000). Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101, 29812988.
  • Tajbakhsh S, Borello U, Vivarelli E, Kelly R, Papkoff J, Duprez D, Buckingham M & Cossu G (1998). Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125, 41554162.
  • Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP & He X (2000). LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530535.
  • Tateishi A, Matsushita M, Asai T, Masuda Z, Kuriyama M, Kanki K, Ishino K, Kawada M, Sano S & Matsui H (2010). Effect of inhibition of glycogen synthase kinase-3 on cardiac hypertrophy during acute pressure overload. Gen Thorac Cardiovasc Surg 58, 265270.
  • Terasaki H, Saitoh T, Shiokawa K & Katoh M (2002). Frizzled-10, up-regulated in primary colorectal cancer, is a positive regulator of the WNT –β-catenin – TCF signaling pathway. Int J Mol Med 9, 107112.
  • Tong H, Imahashi K, Steenbergen C & Murphy E (2002). Phosphorylation of glycogen synthase kinase-3β during preconditioning through a phosphatidylinositol-3-kinase-dependent pathway is cardioprotective. Circ Res 90, 377379.
  • Toyofuku T, Hong Z, Kuzuya T, Tada M & Hori M (2000). Wnt/frizzled-2 signaling induces aggregation and adhesion among cardiac myocytes by increased cadherin-β-catenin complex. J Cell Biol 150, 225241.
  • Uematsu K, He B, You L, Xu Z, McCormick F & Jablons DM (2003a). Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene 22, 72187221.
  • Uematsu K, Kanazawa S, You L, He B, Xu Z, Li K, Peterlin BM, McCormick F & Jablons DM (2003b). Wnt pathway activation in mesothelioma: evidence of Dishevelled overexpression and transcriptional activity of β-catenin. Cancer Res 63, 45474551.
  • Umbhauer M, Djiane A, Goisset C, Penzo-Mendez A, Riou JF, Boucaut JC & Shi DL (2000). The C-terminal cytoplasmic Lys-thr-X-X-X-Trp motif in frizzled receptors mediates Wnt/β-catenin signalling. EMBO J 19, 49444954.
  • van de Schans VA, van den Borne SW, Strzelecka AE, Janssen BJ, van der Velden JL, Langen RC, Wynshaw-Boris A, Smits JF & Blankesteijn WM (2007). Interruption of Wnt signaling attenuates the onset of pressure overload-induced cardiac hypertrophy. Hypertension 49, 473480.
  • Veeman MT, Axelrod JD & Moon RT (2003). A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev Cell 5, 367377.
  • Vigneron F, Dos Santos P, Lemoine S, Bonnet M, Tariosse L, Couffinhal T, Duplaa C & Jaspard-Vinassa B (2011). GSK-3β at the crossroads in the signalling of heart preconditioning: implication of mTOR and Wnt pathways. Cardiovasc Res 90, 4956.
  • Wallingford JB & Habas R (2005). The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132, 44214436.
  • Wang H, Gilner JB, Bautch VL, Wang DZ, Wainwright BJ, Kirby SL & Patterson C (2007). Wnt2 coordinates the commitment of mesoderm to hematopoietic, endothelial, and cardiac lineages in embryoid bodies. J Biol Chem 282, 782791.
  • Wang Y, Macke JP, Abella BS, Andreasson K, Worley P, Gilbert DJ, Copeland NG, Jenkins NA & Nathans J (1996). A large family of putative transmembrane receptors homologous to the product of the Drosophila tissue polarity gene frizzled. J Biol Chem 271, 44684476.
  • Wang Y, Su B, Sah VP, Brown JH, Han J & Chien KR (1998). Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem 273, 54235426.
  • Webb IG, Nishino Y, Clark JE, Murdoch C, Walker SJ, Makowski MR, Botnar RM, Redwood SR, Shah AM & Marber MS (2010). Constitutive glycogen synthase kinase-3α/β activity protects against chronic β-adrenergic remodelling of the heart. Cardiovasc Res 87, 494503.
  • Wei J, Melichian D, Komura K, Hinchcliff M, Lam AP, Lafyatis R, Gottardi CJ, MacDougald OA & Varga J (2011). Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: a novel mouse model for scleroderma Arthritis Rheum 63, 17071717.
  • Weisel KC, Kopp HG, Moore MA, Studer L & Barberi T (2010). Wnt1 overexpression leads to enforced cardiomyogenesis and inhibition of hematopoiesis in murine embryonic stem cells. Stem Cells Dev 19, 745751.
  • Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR & Molkentin JD (2004). Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res 94, 110118.
  • Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, Mlodzik M, Shi DL & Zheng J (2003). Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell 12, 12511260.
  • Xiang G, Yang Q, Wang B, Sekiya N, Mu X, Tang Y, Chen CW, Okada M, Cummins J, Gharaibeh B & Huard J (2011). Lentivirus-mediated Wnt11 gene transfer enhances cardiomyogenic differentiation of skeletal muscle-derived stem cells. Mol Ther 19, 790796.
  • Yadav HN, Singh M & Sharma PL (2010). Involvement of GSK-3β in attenuation of the cardioprotective effect of ischemic preconditioning in diabetic rat heart. Mol Cell Biochem 343, 7581.
  • Ye B, Ge Y, Perens G, Hong L, Xu H, Fishbein MC & Li F (2012). Canonical Wnt/β-catenin signaling in epicardial fibrosis of failed pediatric heart allografts with diastolic dysfunction. Cardiovasc Pathol 22, 5457.
  • Yoon PO, Lee MA, Cha H, Jeong MH, Kim J, Jang SP, Choi BY, Jeong D, Yang DK, Hajjar RJ & Park WJ (2010). The opposing effects of CCN2 and CCN5 on the development of cardiac hypertrophy and fibrosis. J Mol Cell Cardiol 49, 294303.
  • Zhang CG, Jia ZQ, Li BH, Zhang H, Liu YN, Chen P, Ma KT & Zhou CY (2009). β-Catenin/TCF/LEF1 can directly regulate phenylephrine-induced cell hypertrophy and Anf transcription in cardiomyocytes. Biochem Biophys Res Commun 390, 258262.
  • Zhang LL, Liu JJ, Liu F, Liu WH, Wang YS, Zhu B & Yu B (2012). MiR-499 induces cardiac differentiation of rat mesenchymal stem cells through wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 420, 875881.
  • Zuo S, Jones WK, Li H, He Z, Pasha Z, Yang Y, Wang Y, Fan GC, Ashraf M & Xu M (2012). Paracrine effect of Wnt11-overexpressing mesenchymal stem cells on ischemic injury. Stem Cells Dev 21, 598608.