Kilovoltage cone-beam CT: Comparative dose and image quality evaluations in partial and full-angle scan protocols

Authors

  • Kim Sangroh,

    1. Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710
    Search for more papers by this author
  • Yoo Sua,

    1. Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
    Search for more papers by this author
  • Yin Fang-Fang,

    1. Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
    Search for more papers by this author
  • Samei Ehsan,

    1. Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710; Carl Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27710; and Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710
    Search for more papers by this author
  • Yoshizumi Terry

    1. Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710; Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710; Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710; and Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, NC 27710
    Search for more papers by this author

  • 0094-2405/2010/37(7)/3648/12/$30.00

Abstract

Purpose

To assess imaging dose of partial and full-angle kilovoltage CBCT scan protocols and to evaluate image quality for each protocol.

Methods

The authors obtained the CT dose index (CTDI) of the kilovoltage CBCT protocols in an on-board imager by ion chamber (IC) measurements and Monte Carlo (MC) simulations. A total of six new CBCT scan protocols were evaluated: Standard-dose head (100 kVp, 151 mA s, partial-angle), low-dose head (100 kVp, 75 mA s, partial-angle), high-quality head (100 kVp, 754 mA s, partial-angle), pelvis (125 kVp, 706 mA s, full-angle), pelvis spotlight (125 kVp, 752 mA s, partial-angle), and low-dose thorax (110 kVp, 271 mA s, full-angle). Using the point dose method, various CTDI values were calculated by (1) the conventional weighted CTDI (CTDIw) calculation and (2) Bakalyar's method (CTDIwb). The MC simulations were performed to obtain the CTDIw and CTDIwb, as well as from (3) central slice averaging (CTDI2D) and (4) volume averaging (CTDI3D) techniques. The CTDI values of the new protocols were compared to those of the old protocols (full-angle CBCT protocols). Image quality of the new protocols was evaluated following the CBCT image quality assurance (QA) protocol [S. Yoo et al., “A quality assurance program for the on-board imager®,” Med. Phys. 33(11), 4431–4447 (2006)] testing Hounsfield unit (HU) linearity, spatial linearity/resolution, contrast resolution, and HU uniformity.

Results

The CTDIw were found as 6.0, 3.2, 29.0, 25.4, 23.8, and 7.7 mGy for the new protocols, respectively. The CTDIw and CTDIwb differed within +3% between IC measurements and MC simulations. Method (2) results were within ±12% of method (1). In MC simulations, the CTDIw and CTDIwb were comparable to the CTDI2D and CTDI3D with the differences ranging from −4.3% to 20.6%. The CTDI3D were smallest among all the CTDI values. CTDIw of the new protocols were found as 14 times lower for standard head scan and 1.8 times lower for standard body scan than the old protocols, respectively. In the image quality QA tests, all the protocols except low-dose head and low-dose thorax protocols were within the tolerance in the HU verification test. The HU value for the two protocols was always higher than the nominal value. All the protocols passed the spatial linearity/resolution and HU uniformity tests. In the contrast resolution test, only high-quality head and pelvis scan protocols were within the tolerance. In addition, crescent effect was found in the partial-angle scan protocols.

Conclusions

The authors found that CTDIw of the new CBCT protocols has been significantly reduced compared to the old protocols with acceptable image quality. The CTDIw values in the point dose method were close to the volume averaging method within 9%–21% for all the CBCT scan protocols. The Bakalyar's method produced more accurate dose estimation within 14%. The HU inaccuracy from low-dose head and low-dose thorax protocols can render incorrect dose results in the treatment planning system. When high soft-tissue contrast data are desired, high-quality head or pelvis scan protocol is recommended depending on the imaging area. The point dose method can be applicable to estimate CBCT dose with reasonable accuracy in the clinical environment.

Ancillary