Fast image reconstruction for Compton camera using stochastic origin ensemble approach

Authors


Abstract

Purpose:

Compton camera has been proposed as a potential imaging tool in astronomy, industry, homeland security, and medical diagnostics. Due to the inherent geometrical complexity of Compton camera data, image reconstruction of distributed sources can be ineffective and/or time-consuming when using standard techniques such as filtered backprojection or maximum likelihood-expectation maximization (ML-EM). In this article, the authors demonstrate a fast reconstruction of Compton camera data using a novel stochastic origin ensembles (SOE) approach based on Markov chains.

Methods:

During image reconstruction, the origins of the measured events are randomly assigned to locations on conical surfaces, which are the Compton camera analogs of lines-of-responses in PET. Therefore, the image is defined as an ensemble of origin locations of all possible event origins. During the course of reconstruction, the origins of events are stochastically moved and the acceptance of the new event origin is determined by the predefined acceptance probability, which is proportional to the change in event density. For example, if the event density at the new location is higher than in the previous location, the new position is always accepted. After several iterations, the reconstructed distribution of origins converges to a quasistationary state which can be voxelized and displayed.

Results:

Comparison with the list-mode ML-EM reveals that the postfiltered SOE algorithm has similar performance in terms of image quality while clearly outperforming ML-EM in relation to reconstruction time.

Conclusions:

In this study, the authors have implemented and tested a new image reconstruction algorithm for the Compton camera based on the stochastic origin ensembles with Markov chains. The algorithm uses list-mode data, is parallelizable, and can be used for any Compton camera geometry. SOE algorithm clearly outperforms list-mode ML-EM for simple Compton camera geometry in terms of reconstruction time. The difference in computational time will be much larger when full Compton camera system model, including resolution recovery, is implemented and realistic Compton camera geometries are used. It was also shown in this article that while correctly reconstructing the relative distribution of the activity in the object, the SOE algorithm tends to underestimate the intensity values and increase variance in the images; improvements to the SOE reconstruction algorithm will be considered in future work.

Ancillary