The effect of small field output factor measurements on IMRT dosimetry

Authors


Abstract

Purpose:

To evaluate how changes in the measured small field output factors affect the doses in intensity-modulated treatment planning.

Methods:

IMRT plans were created using Philips Pinnacle treatment planning system. The plans were optimized to treat a cylindrical target 2 cm in diameter and 2 cm in length. Output factors for 2 × 2 and 3 × 3 cm2 field sizes were changed by ±5%, ±10%, and ±20% increments from the baseline measurements and entered into the planning system. The treatment units were recommissioned in the treatment planning system after each modification of the output factors and treatment plans were reoptimized. All plans were delivered to a solid water phantom and dose measurements were made using an ionization chamber. The percentage differences between measured and computed doses were calculated. An Elekta Synergy and a Varian 2300CD linear accelerator were separately evaluated.

Results:

For the Elekta unit, decreasing the output factors resulted in higher measured than computed doses by 0.8% for −5%, 3.6% for −10%, and 8.7% for −20% steps. Increasing the output factors resulted in lower doses by 2.9% for +5%, 5.4% for +10%, and 8.3% for +20% steps. For the Varian unit no changes were observed for either increased or decreased output factors.

Conclusions:

The measurement accuracy of small field output factors are of importance especially when the treatment plan consists of small segments as in IMRT. The method proposed here could be used to verify the accuracy of the measured small field output factors for certain linear accelerators as well as to test the beam model. The Pinnacle treatment planning system model uses output factors as a function of jaw setting. Consequently, plans using the Elekta unit, which conforms the jaws to the segments, are sensitive to small field measurement accuracy. On the other hand, for the Varian unit, jaws are fixed and segments are modeled as blocked fields hence, the impact of small field output factors on IMRT monitor unit calculation is not evaluable by this method.

Ancillary