SU-D-BRE-07: Neutron Shielding Assessment for a Compact Proton Therapy Vault

Authors


Abstract

Purpose:

To perform a neutron shielding assessment of a commercially available compact proton therapy system.

Methods:

TOPAS (TOol for PArticle Simulation) beta release was used to model beam line components for Mevion S250 proton treatment system the design of which is that the cyclotron is present in the treatment room. Three neutron production sources were taken into account in the simulation. These are the cyclotron, the treatment nozzle and the patient itself, respectively. The cyclotron was modeled as a cylindrical iron target (r =5 cm, length = 8 cm). A water phantom (10 cm ×10 cm ×60 cm) was used to model the patient and various structures (scattering foils, range modulator wheel, applicator and compensator) defaulted in TOPAS were used to model the passive scattering treatment nozzle. Neutron fluences and energy spectra were counted in a spherical scoring geometry per incident proton in 18 angular bins (10 degree each). Fluence to dose conversion factors from ICRU publication 74 were used to acquire neutron ambient dose equivalent H*(10). A point source line of sight model was then used to calculate neutron dose at eight locations beyond shielding barriers.

Results:

The neutron ambient dose equivalent was calculated at the 8 points of interest around the proton treatment vault. The highest dose was found to be less than 0.781 mSv/year outside south barrier wall. However, the dose is less than 0.05 mSv/year at the control room area of the proton vault.

Conclusion:

All Points of interest were well under annual dose limits. This suggests that the shielding design of this compact proton therapy system is sufficient for radiation protection purpose. However, it is important to note that the workload and the occupancy factors are direct multipliers for dose calculations beyond the barrier and must be accurately estimated for validation of our results.

Ancillary