SU-E-T-65: Characterization of a 2D Array for QA and Pretreatment Plan Verification

Authors


Abstract

Purpose:

The OCTAVIUS detector729 is a 2D array of 729 air vented cubic plane parallel ion chambers used for pretreatment verification and QA. In this study we investigated dosimetric characteristics of this system for clinical photon beam dosimetry.

Methods:

Detector performance evaluation included determination of the location of the effective point of measurement (EPM), sensitivity, linearity, and reproducibility of detector response, as well as output factor, dose rate, and source to surface distance (SSD) dependence. Finally, assessment of wedge modulated fields was carried out. All the evaluations were performed five times for low and high photon energies. For reference measurements, a 0.6 cc ionization chamber was used. Data analysis and comparison of the OCTAVIUS detector with reference ion chamber data was performed using the VeriSoft patient plan verification software.

Results:

The reproducibility and stability of the measurements are excellent, the detector showed same signal with a maximum deviation of less than 0.5% in short and long term. Results of sensitivity test showed same signal with a maximum deviation of approximately 0.1%. As the detector 729 response is linear with dose and dose rate, it can be used for the measurement at regions of high dose gradient effectively. The detector agrees with the ionization chamber measurement to within 1% for SSD range of 75 to 125 cm. Also, its measured wedge modulated profiles matched very well with ion chamber dose profiles acquired in a water tank.

Conclusions:

As the response of the detector 729 is linear with dose and dose rate, it can be used for the measurements in the areas of dose gradients effectively. Based on the measurements and comparisons performed, this system is a reliable and accurate dosimeter for QA and pretreatment plan verification in radiotherapy.

Ancillary