SU-E-T-166: Evaluation of Integral Dose in Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy for Head and Neck Cancer Patient

Authors


Abstract

Purpose:

Volumetric Modulated Arc Therapy (VMAT) usually achieves higher conformity of radiation doses to targets and less delivery time than Intensity Modulated Radiation Therapy (IMRT). We hypothesized that VMAT will increase integral dose (ID) to patients which will decrease the count of white blood count (WBC) lymphocytes, and consequently has a subsequent impact on the immune system. The purpose of this study is to evaluate the ID to patients undergoing IMRT and VMAT for Head and Neck cancers and its impact on the immune system.

Methods:

As a pilot study, 30 head and neck patients who received 9-fields IMRT or 3-arcs Radip-Arcbased VMAT were included in this study. Ten of these patients who received the VMAT plans were re-planned using IMRT with the same objectives. ID was calculated for all cases. All patients also had a baseline WBC obtained prior to treatment, and 3 sets of labs drawn during the course of radiation treatment.

Results:

For the 10 re-planned patients, the mean ID was 13.3 Gy/voxel (range 10.2–17.5 Gy/voxel) for the 9-fields IMRT plans, and was 15.9 Gy/voxel (range 12.4-20.9 Gy/voxel) for the 3-Arc VMAT plan (p=0.01). The integral dose was significant correlated with reducing WBC count during RT even when controlling for concurrent chemotherapy (R square =0.56, p=0.008).

Conclusion:

Although VMAT can deliver higher radiation dose conformality to targets, this benefit is achieved generally at the cost of greater integral doses to normal tissue outside the planning target volume (PTV). Lower WBC counts during RT were associated with higher Integral doses even when controlling for concurrent chemotherapy. This study is ongoing in our Institution to exam the impact of integral doses and WBC on overall survival.

Ancillary