Poster — Thur Eve — 58: Dosimetric validation of electronic compensation for radiotherapy treatment planning



In this study we investigate the deliverability of dosimetric plans generated by the irregular surface compensator (ISCOMP) algorithm for 6 MV photon beams in Eclipse (Varian Medical System, CA). In contrast to physical tissue compensation, the electronic ISCOMP uses MLCs to dynamically modulate the fluence of a photon beam in order to deliver a uniform dose at a user defined plane in tissue. This method can be used to shield critical organs that are located within the treatment portal or improve dose uniformity by tissue compensation in inhomogeneous regions. Three site specific plans and a set of test fields were evaluated using the γ-metric of 3%/ 3 mm on Varian EPID, MapCHECK, and Gafchromic EBT3 film with a clinical tolerance of >95% passing rates. Point dose measurements with an NRCC calibrated ionization chamber were also performed to verify the absolute dose delivered. In all cases the MapCHECK measured plans met the gamma criteria. The mean passing rate for the six EBT3 film field measurements was 96.2%, with only two fields at 93.4 and 94.0% passing rates. The EPID plans passed for fields encompassing the central ∼10 × 10 cm2 region of the detector; however for larger fields and greater off-axis distances discrepancies were observed and attributed to the profile corrections and modeling of backscatter in the portal dose calculation. The magnitude of the average percentage difference for 21 ion chamber point dose measurements and 17 different fields was 1.4 ± 0.9%, and the maximum percentage difference was −3.3%. These measurements qualify the algorithm for routine clinical use subject to the same pre-treatment patient specific QA as IMRT.