Sci—Fri PM: Dosimetry—01: Radiation-induced refraction artefacts in the optical CT readout of polymer gel dosimeters

Authors


Abstract

Polymer gel dosimeters (PGDs) are a desirable tool for the verification of advanced radiotherapy treatments. Fully 3D, deformable, and tissue-equivalent, the PGD polymerizes wherever it absorbs dose. To measure the dose absorbed by a PGD, optical computed tomography (CT) can be used to evaluate, in full 3D, the opacity distribution that coincides with polymerization. In addition to an increase in opacity with dose, an increase in refractive index (RI) is also known to occur in irradiated polymer gels. The increase in RI is slight and was previously assumed insignificant. This work reveals the effects that radiation-induced RI changes can have on the optical CT readout of PGDs. A fan-beam optical CT scanner was used to image a cylindrical PGD irradiated by a pair of 3×3 cm2, 6 MV photon beams in an orthogonal arrangement. Investigative scans were performed to evaluate refraction errors occurring: i) within the plane, and ii) out of the plane of the fan-beam. In-plane refraction was shown to cause distinct streaking artefacts along dose gradients (i.e. RI gradients) due to higher intensity rays being refracted into more opaque regions. Out-of-plane refraction was shown to produce severe, widespread artefacts due to rays missing the detector array. An iterative Savitzky-Golay filtering technique was developed to reduce both types of artefacts by specifically targeting structured errors in sinogram space. Results introduce a new category of imaging artefacts to be aware of when using optical CT for PGD readout.

Ancillary