A deterministic solution of the first order linear Boltzmann transport equation in the presence of external magnetic fields

Authors


Abstract

Purpose:

Accurate radiotherapy dose calculation algorithms are essential to any successful radiotherapy program, considering the high level of dose conformity and modulation in many of today's treatment plans. As technology continues to progress, such as is the case with novel MRI-guided radiotherapy systems, the necessity for dose calculation algorithms to accurately predict delivered dose in increasingly challenging scenarios is vital. To this end, a novel deterministic solution has been developed to the first order linear Boltzmann transport equation which accurately calculates x-ray based radiotherapy doses in the presence of magnetic fields.

Methods:

The deterministic formalism discussed here with the inclusion of magnetic fields is outlined mathematically using a discrete ordinates angular discretization in an attempt to leverage existing deterministic codes. It is compared against the EGSnrc Monte Carlo code, utilizing the emf_macros addition which calculates the effects of electromagnetic fields. This comparison is performed in an inhomogeneous phantom that was designed to present a challenging calculation for deterministic calculations in 0, 0.6, and 3 T magnetic fields oriented parallel and perpendicular to the radiation beam. The accuracy of the formalism discussed here against Monte Carlo was evaluated with a gamma comparison using a standard 2%/2 mm and a more stringent 1%/1 mm criterion for a standard reference 10 × 10 cm2 field as well as a smaller 2 × 2 cm2 field.

Results:

Greater than 99.8% (94.8%) of all points analyzed passed a 2%/2 mm (1%/1 mm) gamma criterion for all magnetic field strengths and orientations investigated. All dosimetric changes resulting from the inclusion of magnetic fields were accurately calculated using the deterministic formalism. However, despite the algorithm's high degree of accuracy, it is noticed that this formalism was not unconditionally stable using a discrete ordinate angular discretization.

Conclusions:

The feasibility of including magnetic field effects in a deterministic solution to the first order linear Boltzmann transport equation is shown. The results show a high degree of accuracy when compared against Monte Carlo calculations in all magnetic field strengths and orientations tested.

Ancillary