A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model




The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design.


Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 1010 histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm.


The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an 125I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose function ratio between the current and the 2006 model had a minimum of 0.980 at 0.4 cm, close to the source sheath and for large distances approached 1.014. 2D anisotropy function ratios were close to unity for 50° ≤ θ ≤ 110°, but exceeded 5% for θ < 40° at close distances to the sheath and exceeded 15% for θ > 140°, even at large distances. Photon energy fluence of the updated model as compared to the 2006 model showed a decrease in output with increasing distance; this effect was pronounced at the lowest energies. A decrease in photon fluence with increase in polar angle was also observed and was attributed to the silver epoxy component.


Changes in source design influenced the overall dose rate and distribution by more than 2% in several regions. This discrepancy is greater than the dose calculation acceptance criteria as recommended in the AAPM TG-56 report. The effect of the design change on the TG-43 parameters would likely not result in dose differences outside of patient applicators. Adoption of this new dataset is suggested for accurate depiction of model S700 source dose distributions.