SU-E-J-165: Dosimetric Impact of Liver Rotations in Stereotactic Body Radiation Therapy

Authors


Abstract

Purpose:

Often in liver stereotactic body radiotherapy a single fiducial is implanted near the tumor for image-guided treatment delivery. In such cases, rotational corrections are calculated based on the spine. This study quantifies rotational differences between the spine and liver, and investigates the corresponding dosimetric impact.

Methods:

Seven patients with 3 intrahepatic fiducials and 4DCT scans were identified. The planning CT was separately co-registered with 4 phases of the 4DCT (0%, 50%, 100% inhale and 50% exhale) by 1) rigid registration of the spine, and 2) point-based registration of the 3 fiducials. Rotation vectors were calculated for each registration. Translational differences in fiducial positions between the 2 registrations methods were investigated. Dosimetric impact due to liver rotations and deformations was assessed using critical structures delineated on the 4DCT phases. For dose comparisons, a single fiducial was translationally aligned following spine alignment to represent what is typically done in the clinic.

Results:

On average, differences between spine and liver rotations during the 0%, 50%, 100% inhale, and 50% exhale phases were 3.23°, 3.27°, 2.26° and 3.11° (pitch), 3.00°, 2.24°, 3.12° and 1.73° (roll), and 1.57°, 1.98°, 2.09° and 1.36° (yaw), respectively. The maximum difference in rotations was 12°, with differences of >3° seen in 14/28 (pitch), 10/28 (roll), and 6/28 (yaw) cases. Average fiducial displacements of 2.73 (craniocaudal), 1.04 (lateral) and 1.82 mm (vertical) were seen. Evaluating percent dose differences for 5 patients at the peaks of the respiratory cycle, the maximum dose to the duodenum, stomach, bowel and esophagus differed on average by 11.4%, 5.3%, 11.2% and 49.1% between the 2 registration methods.

Conclusion:

Lack of accounting for liver rotation during treatment might Result in clinically significant dose differences to critical structures. Both rotational and translational deviations should be considered in planning margins when using spine alignment for liver treatments.

Ancillary