SU-E-T-280: Dose Evaluation in Using CT Density Versus Relative Stopping Power for Pencil Beam Planning and Treating IROC Proton Phantom

Authors


Abstract

Purpose:

The purpose of this study is to evaluate any effects of converted CT density variation in treatment planning system (TPS) of spot scanning proton therapy with an IROC proton prostate phantom at our new ProteusOne Proton Therapy Center.

Methods:

A proton prostate phantom was requested from the Imaging and Radiation Oncology Core Houston (IROC), The University of Texas MD Anderson Cancer Center, Houston, TX, where GAF Chromic films and couples of thermo luminescent dosemeter (TLD) capsules in target and adjacent structures were embedded for imaging and dose monitoring. Various material such as PVC, PBT HI polystyrene as dosimetry inserts and acrylic were within phantom. Relative stopping power (SP) were provided. However our treatment planning system (TPS) doesn't require SP instead relative density was converted relative to water in TPS. Phantom was irradiated and the results were compared with IROC measurements. The range of relative density was converted from SP into relative density of water as a new assigned material and tested.

Results:

The summary of TLD measurements of the prostate and femoral heads were well within 2% of the TPS and met the criteria established by IROC. The film at coronal plane was found to be shift in superior-inferior direction due to locking position of cylinder insert was off and was corrected. The converted CT density worked precisely to correlated relative stopping power.

Conclusion:

The proton prostate phantom provided by IROC is a useful methodology to evaluate our new commissioned proton pencil beam and TPS within certain confidence in proton therapy. The relative stopping power was converted into relative physical density relatively to water and the results were satisfied.

Ancillary