SU-E-T-360: End-To-End Dosimetric Testing of a Versa HD Linear Accelerator with the Agility Head Modeled in Pinnacle3

Authors


Abstract

Purpose:

The Versa HD incorporates a variety of upgrades, primarily including the Agility head. The distinct dosimetric properties of the head from its predecessors combined with flattening-filter-free (FFF) beams require a new investigation of modeling in planning systems and verification of modeling accuracy.

Methods:

A model was created in Pinnacle3 v9.8 with commissioned beam data. Leaf transmission was modeled as <0.5% with maximum leaf speed of 3 cm/s. Photon spectra were tuned for FFF beams, for which profiles were modeled with arbitrary profiles rather than with cones. For verification, a variety of plans with varied parameters were devised, and point dose measurements were compared to calculated values. A phantom of several plastic water and Styrofoam slabs was scanned and imported into Pinnacle3. Beams of different field sizes, SSD, wedges, and gantry angles were created. All available photon energies (6 MV, 10 MV, 18 MV, 6 FFF, 10 FFF) as well four clinical electron energies (6, 9, 12, and 15 MeV) were investigated. The plans were verified at a calculation point (8 cm deep for photons, variable for electrons) by measurement with a PTW Semiflex ionization chamber. In addition, IMRT testing was performed with three standard plans (step and shoot IMRT, small and large field VMAT plans). The plans were delivered on the Delta4 IMRT QA phantom (ScandiDos, Uppsala, Sweden).

Results:

Homogeneous point dose measurement agreed within 2% for all photon and electron beams. Open field photon measurements along the central axis at 100 cm SSD passed within 1%. Gamma passing rates were >99.5% for all plans with a 3%/3mm tolerance criteria. The IMRT QA results for the first 23 patients yielded gamma passing rates of 97.4±2.3%.

Conclusion:

The end-to-end testing ensured confidence in the ability of Pinnacle3 to model photon and electron beams with the Agility head.

Ancillary