SU-E-T-615: Plan Comparison Between Photon IMRT and Proton Plans Incorporating Uncertainty Analysis




In this study, we investigate the effect of setup uncertainty on DVH calculations which may impact plan comparison.


Treatment plans (6 MV VMAT calculated on Pinnacle TPS) were chosen for different disease sites: brain, prostate, H&N and spine in this retrospective study. A proton plan (PP) using double scattering beams was generated for each selected VMAT plan subject to the same set of dose-volume constraints as in VMAT. An uncertainty analysis was incorporated on the DVH calculations in which isocenter shifts from 1 to 5 mm in each of the ±x, ±y and ±z directions were used to simulate the setup uncertainty and residual positioning errors. A total of 40 different combinations of isocenter shifts were used in the re-calculation of DVH of the PTV and the various OARs for both the VMAT and the corresponding PT.


For the brain case, both VMAT and PP are comparable in PTV coverage and OAR sparing, and VMAT is a clear choice for treatment due to its ease of delivery. However, when incorporating isoshifts in DVH calculations, a significant change in dose-volume relationship emerges. For example, both VMAT and PT provide adequate coverage, even with ±3mm isoshift. However, +3mm isoshift results in increase of V40(Lcochlea, VMAT) from 7.2% in the original plan to 45% and V40(R cochlea, VMAT) from 75% to 92%. For protons, V40(Lcochlea, PT) increases from 62% in the initial plan to 75%, while V40(Rcochea, PT) increases from 7% to 26%.


DVH alone may not be sufficient to allow an unequivocal decision in plan comparison, especially when two rival plans are very similar in both PTV coverage and OAR sparing. It is a good practice to incorporate uncertainty analysis on photon and proton plan comparison studies to test the plan robustness in plan evaluation.