SU-E-T-759: To Replan Or Not To Replan for Each Fraction Using Inverse Optimization for Multichannel Vaginal Cylinder




This study investigates whether replanning each fraction for vaginal cuff HDR therapy using a multichannel cylinder (MC) and brachytherapy inverse optimization (BIO) provides dosimetric benefits to organs-at-risk (OAR). The goal was to appropriately cover the target and limit dose to OAR, as well as evaluate dosimetric changes for each fraction, while doing this in a timely and cost effective manner.


From an initial selection of 57 patients that were treated with 3 fractions using a MC and BIO, a subset of n=12 patients was selected based on the criterion that one plan was used for all 3 fractions. A simulation CT was acquired prior to each fraction. CT scans for fractions 2 and 3 were fused to the initial CT. Contours for the bladder and rectum were manually drawn on CTs for all 3 fractions, and the clinical treatment volume (PTVeval) was defined. Cylinders were reconstructed using applicator modeling library, influencing time and cost effectiveness. Planning objectives were at least 95% prescription dose to 95% (D95%) of target volume and limiting high dose to OAR. Dose to 2 cm3 (D2cc) for each OAR was analyzed using a t-test.


This study concentrated on comparing 2cm3 of highest dose to OAR (D2cc), for each fraction for the plans that were used to treat all 3 fraction. Based on statistical analysis, using the initial plan for fractions 2 and 3 resulted in approximately 6% change to the highest D2cc of the bladder (p=0.03).


Performing CT fusion and contours of each OAR on each fraction allows objective plan evaluation and supports decision making on the necessity of replanning based on improved dose sparing for OAR. Future studies will investigate the effects of replanning on maximum dose (D0.1cc) using the same physician-drawn OAR contours to avoid subjectivity.