SU-F-BRD-07: Fast Monte Carlo-Based Biological Optimization of Proton Therapy Treatment Plans for Thyroid Tumors




To demonstrate the feasibility of fast Monte Carlo (MC) based biological planning for the treatment of thyroid tumors in spot-scanning proton therapy.


Recently, we developed a fast and accurate GPU-based MC simulation of proton transport that was benchmarked against Geant4.9.6 and used as the dose calculation engine in a clinically-applicable GPU-accelerated IMPT optimizer. Besides dose, it can simultaneously score the dose-averaged LET (LETd), which makes fast biological dose (BD) estimates possible. To convert from LETd to BD, we used a linear relation based on cellular irradiation data. Given a thyroid patient with a 93cc tumor volume, we created a 2-field IMPT plan in Eclipse (Varian Medical Systems). This plan was re-calculated with our MC to obtain the BD distribution. A second 5-field plan was made with our in-house optimizer, using pre-generated MC dose and LETd maps. Constraints were placed to maintain the target dose to within 25% of the prescription, while maximizing the BD. The plan optimization and calculation of dose and LETd maps were performed on a GPU cluster. The conventional IMPT and biologically-optimized plans were compared.


The mean target physical and biological doses from our biologically-optimized plan were, respectively, 5% and 14% higher than those from the MC re-calculation of the IMPT plan. Dose sparing to critical structures in our plan was also improved. The biological optimization, including the initial dose and LETd map calculations, can be completed in a clinically viable time (∼30 minutes) on a cluster of 25 GPUs.


Taking advantage of GPU acceleration, we created a MC-based, biologically optimized treatment plan for a thyroid patient. Compared to a standard IMPT plan, a 5% increase in the target's physical dose resulted in ∼3 times as much increase in the BD. Biological planning was thus effective in escalating the target BD.