WE-EF-BRA-09: Microbeam Radiation Therapy Enhances Tumor Drug Uptake of PEGylated Liposomal Doxorubicin (PLD) in a Triple Negative Breast Cancer GEM Model

Authors


Abstract

Purpose:

Overcoming low anti-cancer drug uptake in tumors is a key challenge limiting its clinical use. We propose to enhance the drug delivery using upfront Microbeam Radiation Therapy (MRT). MRT is a preclinical cancer therapy that utilizes microplanar beams to deliver spatially oscillating planes of high and low doses. Animal studies have demonstrated that ultrahigh dose (100s Gy) MRT eradicates tumors without damaging the function of normal tissue exposed to the same radiation. Our previous study indicated that MRT induces intense angiogenesis in tumor rim and surrounding normal tissue 1–2 days post radiation. We hypothesize that the tumor microenvironment modulation induced by MRT may enhance carrier-mediated agent drug delivery to tumors with inherent poor drug uptake. We thus investigated MRT-induced pharmacokinetics (PK) of PEGylated liposomal doxorubicin (PLD), a nano-scale doxorubicin, in T11 genetically engineered mouse model of triple negative breast cancer.

Methods:

A research irradiator (160kVp, RadSource Technologies) with a customized collimator was used to produce the MRT microbeam of in average 390µm width and 1190µm peak-to-peak distance. The peak dose rate of 1–2Gy/min. Dosimetry is by EBT3 film cross-calibrated with ion chamber at large fields. All mice were administered PLD at 6mg/kg IV x1 at 16h post MRT and sacrificed at 5min, 6h, 24h, and 96h post PLD administration (n=3 or 4 per group).

Results:

The MRT(28Gy)+PLD group mice had a total doxorubicin tumor concentration (area-under-the concentration-curve, AUC) of 206,040ng/mL•h, 3.71 times the concentration of the PLD-alone group. The MRT(34Gy)+PLD group had a higher mean total doxorubicin concentration in tumor (20,779ng/ml) than the MRT(28Gy)+PLD group (10,665ng/ml).

Conclusion:

Our preliminary results indicate that microbeam radiation therapy (MRT) can enhance nano-scale anti-cancer drug delivery to tumors approximately 4-fold. The exact working mechanism, the comparison with broad beam irradiation, and optimization of MRT for drug delivery enhancement are under investigation.

Ancillary