WE-G-207-02: Full Sequential Projection Onto Convex Sets (FS-POCS) for X-Ray CT Reconstruction




To develop an iterative reconstruction method for X-ray CT, in which the reconstruction can quickly converge to the desired solution with much reduced projection views.


The reconstruction is formulated as a convex feasibility problem, i.e. the solution is an intersection of three convex sets: 1) data fidelity (DF) set – the L2 norm of the difference of observed projections and those from the reconstructed image is no greater than an error bound; 2) non-negativity of image voxels (NN) set; and 3) piecewise constant (PC) set - the total variation (TV) of the reconstructed image is no greater than an upper bound. The solution can be found by applying projection onto convex sets (POCS) sequentially for these three convex sets. Specifically, the algebraic reconstruction technique and setting negative voxels as zero are used for projection onto the DF and NN sets, respectively, while the projection onto the PC set is achieved by solving a standard Rudin, Osher, and Fatemi (ROF) model. The proposed method is named as full sequential POCS (FS-POCS), which is tested using the Shepp-Logan phantom and the Catphan600 phantom and compared with two similar algorithms, TV-POCS and CP-TV.


Using the Shepp-Logan phantom, the root mean square error (RMSE) of reconstructed images changing along with the number of iterations is used as the convergence measurement. In general, FS- POCS converges faster than TV-POCS and CP-TV, especially with fewer projection views. FS-POCS can also achieve accurate reconstruction of cone-beam CT of the Catphan600 phantom using only 54 views, comparable to that of FDK using 364 views.


We developed an efficient iterative reconstruction for sparse-view CT using full sequential POCS. The simulation and physical phantom data demonstrated the computational efficiency and effectiveness of FS-POCS.