Statistical model based iterative reconstruction in clinical CT systems. Part III. Task-based kV/mAs optimization for radiation dose reduction

Authors

  • Li Ke,

    1. Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792
    Search for more papers by this author
  • Gomez-Cardona Daniel,

    1. Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705
    Search for more papers by this author
  • Hsieh Jiang,

    1. Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 and GE Healthcare, 3000 N Grandview Boulevard, Waukesha, Wisconsin 53188
    Search for more papers by this author
  • Lubner Meghan G.,

    1. Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792
    Search for more papers by this author
  • Pickhardt Perry J.,

    1. Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792
    Search for more papers by this author
  • Chen Guang-Hong

    1. Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792
    Search for more papers by this author
    • a)

      Author to whom correspondence should be addressed. Electronic mail: gchen7@wisc.edu


Abstract

Purpose:

For a given imaging task and patient size, the optimal selection of x-ray tube potential (kV) and tube current-rotation time product (mAs) is pivotal in achieving the maximal radiation dose reduction while maintaining the needed diagnostic performance. Although contrast-to-noise (CNR)-based strategies can be used to optimize kV/mAs for computed tomography (CT) imaging systems employing the linear filtered backprojection (FBP) reconstruction method, a more general framework needs to be developed for systems using the nonlinear statistical model-based iterative reconstruction (MBIR) method. The purpose of this paper is to present such a unified framework for the optimization of kV/mAs selection for both FBP- and MBIR-based CT systems.

Methods:

The optimal selection of kV and mAs was formulated as a constrained optimization problem to minimize the objective function, Dose(kV,mAs), under the constraint that the achievable detectability index d′(kV,mAs) is not lower than the prescribed value of d for a given imaging task. Since it is difficult to analytically model the dependence of d′ on kV and mAs for the highly nonlinear MBIR method, this constrained optimization problem is solved with comprehensive measurements of Dose(kV,mAs) and d′(kV,mAs) at a variety of kV–mAs combinations, after which the overlay of the dose contours and d′ contours is used to graphically determine the optimal kV–mAs combination to achieve the lowest dose while maintaining the needed detectability for the given imaging task. As an example, d′ for a 17 mm hypoattenuating liver lesion detection task was experimentally measured with an anthropomorphic abdominal phantom at four tube potentials (80, 100, 120, and 140 kV) and fifteen mA levels (25 and 50–700) with a sampling interval of 50 mA at a fixed rotation time of 0.5 s, which corresponded to a dose (CTDIvol) range of [0.6, 70] mGy. Using the proposed method, the optimal kV and mA that minimized dose for the prescribed detectability level of d=16 were determined. As another example, the optimal kV and mA for an 8 mm hyperattenuating liver lesion detection task were also measured using the developed framework. Both an in vivo animal and human subject study were used as demonstrations of how the developed framework can be applied to the clinical work flow.

Results:

For the first task, the optimal kV and mAs were measured to be 100 and 500, respectively, for FBP, which corresponded to a dose level of 24 mGy. In comparison, the optimal kV and mAs for MBIR were 80 and 150, respectively, which corresponded to a dose level of 4 mGy. The topographies of the iso-d′ map and the iso-CNR map were the same for FBP; thus, the use of d′- and CNR-based optimization methods generated the same results for FBP. However, the topographies of the iso-d′ and iso-CNR map were significantly different in MBIR; the CNR-based method overestimated the performance of MBIR, predicting an overly aggressive dose reduction factor. For the second task, the developed framework generated the following optimization results: for FBP, kV = 140, mA = 350, dose = 37.5 mGy; for MBIR, kV = 120, mA = 250, dose = 18.8 mGy. Again, the CNR-based method overestimated the performance of MBIR. Results of the preliminary in vivo studies were consistent with those of the phantom experiments.

Conclusions:

A unified and task-driven kV/mAs optimization framework has been developed in this work. The framework is applicable to both linear and nonlinear CT systems such as those using the MBIR method. As expected, the developed framework can be reduced to the conventional CNR-based kV/mAs optimization frameworks if the system is linear. For MBIR-based nonlinear CT systems, however, the developed task-based kV/mAs optimization framework is needed to achieve the maximal dose reduction while maintaining the desired diagnostic performance.

Ancillary