Failure mode and effects analysis based risk profile assessment for stereotactic radiosurgery programs at three cancer centers in Brazil

Authors

  • Teixeira Flavia C.,

    1. CNEN—Comissao Nacional de Energia Nuclear, Rio de Janeiro, RJ 22290-901, Brazil and LCR/UERJ—Laboratorio de Ciencias Radiologicas/Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20550-013, Brazil
    Search for more papers by this author
  • de Almeida Carlos E.,

    1. LCR/UERJ—Laboratorio de Ciencias Radiologicas/Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20550-013, Brazil
    Search for more papers by this author
  • Saiful Huq M.

    1. Department of Radiation Oncology, University of Pittsburgh Cancer Institute and UPMC Cancer Center, Pittsburgh, Pennsylvania 15232
    Search for more papers by this author

Abstract

Purpose:

The goal of this study was to evaluate the safety and quality management program for stereotactic radiosurgery (SRS) treatment processes at three radiotherapy centers in Brazil by using three industrial engineering tools (1) process mapping, (2) failure modes and effects analysis (FMEA), and (3) fault tree analysis.

Methods:

The recommendations of Task Group 100 of American Association of Physicists in Medicine were followed to apply the three tools described above to create a process tree for SRS procedure for each radiotherapy center and then FMEA was performed. Failure modes were identified for all process steps and values of risk priority number (RPN) were calculated from O, S, and D (RPN = O × S × D) values assigned by a professional team responsible for patient care.

Results:

The subprocess treatment planning was presented with the highest number of failure modes for all centers. The total number of failure modes were 135, 104, and 131 for centers I, II, and III, respectively. The highest RPN value for each center is as follows: center I (204), center II (372), and center III (370). Failure modes with RPN ≥ 100: center I (22), center II (115), and center III (110). Failure modes characterized by S ≥ 7, represented 68% of the failure modes for center III, 62% for center II, and 45% for center I. Failure modes with RPNs values ≥100 and S ≥ 7, D ≥ 5, and O ≥ 5 were considered as high priority in this study.

Conclusions:

The results of the present study show that the safety risk profiles for the same stereotactic radiotherapy process are different at three radiotherapy centers in Brazil. Although this is the same treatment process, this present study showed that the risk priority is different and it will lead to implementation of different safety interventions among the centers. Therefore, the current practice of applying universal device-centric QA is not adequate to address all possible failures in clinical processes at different radiotherapy centers. Integrated approaches to device-centric and process specific quality management program specific to each radiotherapy center are the key to a safe quality management program.

Ancillary