4D interventional device reconstruction from biplane fluoroscopy

Authors


Abstract

Purpose:

Biplane angiography systems provide time resolved 2D fluoroscopic images from two different angles, which can be used for the positioning of interventional devices such as guidewires and catheters. The purpose of this work is to provide a novel algorithm framework, which allows the 3D reconstruction of these curvilinear devices from the 2D projection images for each time frame. This would allow creating virtual projection images from arbitrary view angles without changing the position of the gantries, as well as virtual endoscopic 3D renderings.

Methods:

The first frame of each time sequence is registered to and subtracted from the following frame using an elastic grid registration technique. The images are then preprocessed by a noise reduction algorithm using directional adaptive filter kernels and a ridgeness filter that emphasizes curvilinear structures. A threshold based segmentation of the device is then performed, followed by a flux driven topology preserving thinning algorithm to extract the segments of the device centerline. The exact device path is determined using Dijkstra's algorithm to minimize the curvature and distance between adjacent segments as well as the difference to the device path of the previous frame. The 3D device centerline is then reconstructed using epipolar geometry.

Results:

The accuracy of the reconstruction was measured in a vascular head phantom as well as in a cadaver head and a canine study. The device reconstructions are compared to rotational 3D acquisitions. In the phantom experiments, an average device tip accuracy of 0.35 ± 0.09 mm, a Hausdorff distance of 0.65 ± 0.32 mm, and a mean device distance of 0.54 ± 0.33 mm were achieved. In the cadaver head and canine experiments, the device tip was reconstructed with an average accuracy of 0.26 ± 0.20 mm, a Hausdorff distance of 0.62 ± 0.08 mm, and a mean device distance of 0.41 ± 0.08 mm. Additionally, retrospective reconstruction results of real patient data are presented.

Conclusions:

The presented algorithm is a novel approach for the time resolved 3D reconstruction of interventional devices from biplane fluoroscopic images, thus allowing the creation of virtual projection images from arbitrary view angles as well as virtual endoscopic 3D renderings. Availability of this technique would enhance the ability to accurately position devices in minimally invasive endovascular procedures.

Ancillary