A Dirichlet process mixture model for automatic 18F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions

Authors


Abstract

Purpose:

The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness.

Methods:

The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10–37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available.

Results:

Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a calibration curve was determined to automatically generate the optimal parameter from the variance of the ROI. This “calibration curve” was then applied to contour the whole data set. The accuracy (mean discrepancy between DPM model-based contours and reference contours) of volume estimation was below (1 ± 7)% on the whole data set (1 SD). The overlap between true and automatically segmented contours, measured by the Dice similarity coefficient, was 0.93 with a SD of 0.03.

Conclusions:

The proposed DPM model was able to accurately reproduce known volumes of FDG concentration, with high overlap between segmented and true volumes. For all the analyzed inserts of the IEC phantom, the algorithm proved to be robust to variations in radius and in TBR. The main advantage of this algorithm was that no setting of DPM parameters was required in advance, since the proper setting of the only parameter that could significantly influence the segmentation results was automatically related to the uptake variance of the chosen ROI. Furthermore, the algorithm did not need any preliminary choice of the optimum number of classes to describe the ROIs within PET images and no assumption about the shape of the lesion and the uptake heterogeneity of the tracer was required.

Ancillary