SU-F-E-19: A Novel Method for TrueBeam Jaw Calibration




A simple jaw calibration method is proposed for Varian TrueBeam using an EPID-Encoder combination that gives accurate fields sizes and a homogeneous junction dose. This benefits clinical applications such as mono-isocentric half-beam block breast cancer or head and neck cancer treatment with junction/field matching.


We use EPID imager with pixel size 0.392 mm × 0.392 mm to determine the radiation jaw position as measured from radio-opaque markers aligned with the crosshair. We acquire two images with different symmetric field sizes and record each individual jaw encoder values. A linear relationship between each jaw's position and its encoder value is established, from which we predict the encoder values that produce the jaw positions required by TrueBeam's calibration procedure. During TrueBeam's jaw calibration procedure, we move the jaw with the pendant to set the jaw into position using the predicted encoder value. The overall accuracy is under 0.1 mm.


Our in-house software analyses images and provides sub-pixel accuracy to determine field centre and radiation edges (50% dose of the profile). We verified the TrueBeam encoder provides a reliable linear relationship for each individual jaw position (R2>0.9999) from which the encoder values necessary to set jaw calibration points (1 cm and 19 cm) are predicted. Junction matching dose inhomogeneities were improved from >±20% to <±6% using this new calibration protocol. However, one technical challenge exists for junction matching, if the collimator walkout is large.


Our new TrueBeam jaw calibration method can systematically calibrate the jaws to crosshair within sub-pixel accuracy and provides both good junction doses and field sizes. This method does not compensate for a larger collimator walkout, but can be used as the underlying foundation for addressing the walkout issue.