SU-F-I-75: Half-Value Layer Thicknesses and Homogeneity Coefficients for Fluoroscopic X-Ray Beam Spectra Incorporating Spectral Filtration

Authors


Abstract

Purpose:

The purpose of this investigation is to quantify various first half-value-layers (HVLs), second HVLs and homogeneity coefficients (HCs) for a state-of-the-art fluoroscope utilizing spectral (copper) filtration.

Methods:

A Radcal (Monrovia, Ca) AccuPro dosimeter with a 10×6-6 calibrated ionization chamber was used to measure air kerma for radiographic x-ray exposures made on a Siemens (Erlangen, Germany) Artis ZeeGo fluoroscope operated in the service mode. The ionization chamber was centered in the x-ray beam at 72 cm from the focal spot with a source-to-image-distance of 120 cm. The collimators were introduced to limit the x-ray field to approximately 5 cm × 5 cm at the ionization chamber plane. Type-1100 aluminum filters, in 0.5 mm increments, were used to determine the HVL. Two HVL calculation methods were used, log-linear interpolation and Lambert-W interpolation as described by Mathieu [Med Phys, 38(8), 4546 (2011)]. Multiple measurements were made at 60, 80, 100, 120 kVp at spectral filtration thicknesses of 0, 0.1, 0.3, 0.6 and 0.9 mm.

Results:

First HVL, second HVL, and HCs are presented for the fluoroscopic x-ray beam spectra indicated above, with nearly identical results from the two interpolation methods. Accuracy of the set kVp was also determined and deviated less than 2%. First HVLs for fluoroscopic x-ray beam spectra without spectral filtration determined in our study were 7%–16% greater than previously published data by Fetterly et al. [Med Phys, 28, 205 (2001)]. However, the FDA minimum HVL requirements changed since that publication, requiring larger HVLs as of 2006. Additionally, x-ray tube and generator architecture have substantially changed over the last 15 years providing different beam spectra.

Conclusion:

X-ray beam quality characteristics for state-of-the-art fluoroscopes with spectral filtration have not been published. This study provides reference data which will be useful for defining beam qualities encountered on fluoroscopes using spectral filtration.

Ancillary