SU-F-J-125: Effects of Couch Position Variability On Dosimetric Accuracy with An MRI-Guided Co-60 Radiation Therapy Machine




Magnetic resonance imaging (MRI) guidance in radiation therapy brings real-time imaging and adaptive planning into the treatment vault where it can account for interfraction and intrafraction movement of soft tissue. The only commercially-available MRI-guided radiation therapy device is a three-head 60Co and MRI system with an integrated treatment planning system (TPS). An up to 20% attenuation of the beam by the couch is well modeled in the TPS. However, variations in the patient's day-to-day position introduce discrepancies in the actual couch position relative its location as modeled in the treatment plan. For this reason, our institution avoids plans with beams that pass through or near the couch edges. This study looks at plans without restriction on beam angles and investigates the effects of couch shift by simulating shifts of the couch relative to the patient, in order to determine whether couch edge avoidance restrictions can be lifted.


A total of 27 plans from 23 patients were investigated. Couch shifts of 1 and 2 cm were introduced in combinations of lateral and vertical direction to simulate variations in patient positioning on the couch giving 16 shifted plans per reference plan. The shift values of 1 and 2 cm were based on shifts recorded in 320 treatment fractions.


Measured couch attenuation versus TPS modeled agreed within 2.1%. Planning Target Volume (PTV) D95 changed less than 1% for 1 and 2 cm couch shifts in only the x-direction and less than 3% for all directions.


The dosimetry of all plans with shifts up to ±2 cm was within reasonable clinical tolerances. Robustness of a plan to couch shifts can be tested in the TPS. Inclusion of beams traversing the couch edges should be considered if an improvement in plan quality or delivery time can be achieved.