SU-F-J-169: A Feasibility Study of Using MRI Alone in Abdominal Radiotherapy

Authors


Abstract

Purpose:

To demonstrate the feasibility of a MRI alone workflow to support treatment planning and image guidance for abdominal radiotherapy.

Methods:

Abdominal MR images (in-phase/out-phase/fat/water) were acquired for a patient with breath-hold using a Dixon pulse sequence. Air masks were created on in-phase images using intensity thresholding and morphological processing methods in order to separate air from bone. Pseudo-CT and DRRs were generated using a published method. To investigate the effect of heterogeneity corrections on dose calculations using pseudo-CT, three different plans (3-field 3D, 5-field IMRT and 2-arc VMAT) were performed to mimic pancreatic treatments (1.8Gy/fraction over 28 fractions).

Results:

The DRRs created from pseudo-CT were of comparable quality as those created from CT. Comparing dose calculations with and without heterogeneity corrections between the 3 different plans, the biggest dosimetric differences were seen in the VMAT plan where modulation must occur across air-tissue interfaces such as those of the stomach and bowel. The DVHs for the VMAT plan showed ∼84cc difference at V50Gy in the small bowel. In terms of pseudo-CT quality, some small volumes of air in the bowel and stomach were misclassified as bone. The VMAT plan was re-optimized on pseudo-CT with 0 HU in the misclassified areas. The V50Gy in the small bowel differed by ∼90cc between the new VMAT plan with and without heterogeneity corrections.

Conclusion:

We found that the use of MRI alone is feasible for abdominal treatment planning and image guidance. A difference between calculations with and without heterogeneity corrections was found that is most pronounced for VMAT where the traversal of air-tissue interfaces is unavoidable. Future work will be performed to minimize misclassification between bone and air.

Ancillary