SU-G-BRB-07: Developing a QA Procedure for Gated VMAT SABR Treatments Using 10 MV Beam in Flattening-Filter Free Mode




To develop a QA procedure for gated VMAT stereotactic ablative radiotherapy (SABR) treatments.


An interface was constructed to attach the translational stage of a Quasar respiratory motion phantom to a pinpoint ion chamber insert and move the ion chamber inside an ArcCheck diode array. The Quasar phantom controller used a patient specific breathing pattern to translate the ion chamber in a superior-inferior direction inside the ArcCheck. An amplitude-based RPM tracking system was specified to turn the beam on during the exhale phase of the breathing pattern. SABR plans were developed using Eclipse for liver PTVs ranging in size from 3-12 cm in diameter using a 2-arc VMAT technique. Dose was measured in the middle of the penumbra region, where the high dose gradient allowed for sensitive detection of any inaccuracies in gated dose delivery. The overall fidelity of the dose distribution was confirmed using ArcCheck. The sensitivity of the gating QA procedure was investigated with respect to the following four parameters: PTV size, duration of exhale, baseline drift, and gating window size.


The difference between the measured dose to a point in the penumbra and the Eclipse calculated dose was under 2% for small residual motions. The QA procedure was independent of PTV size and duration of exhale. Baseline drift and gating window size, however, significantly affected the penumbral dose measurement, with differences of up to 30% compared to Eclipse.


This study described a highly sensitive QA procedure for gated VMAT SABR treatments. The QA outcome was dependent on the gating window size and baseline drift. Analysis of additional patient breathing patterns will be required to determine a clinically relevant gating window size and an appropriate tolerance level for this procedure.