SU-G-TeP2-06: Development of Novel Radiochromic Films for Radiotherapy Dosimetry

Authors


Abstract

Purpose:

To develop and evaluate novel radiochromic films for quality assurance in radiotherapy dosimetry.

Materials and Methods:

Novel radiochromic film compositions were formulated using leuco crystal violet (LCV) as a reporting system and tetrabromoethane as a free radical source. The film matrix used consisted of polyurethane polymer mixed with dibutyl phthalate plasticizer (20 wt%). The concentration of the radical initiator was kept constant at 10 wt% and the concentration of the LCV dye varied (1 and 2 wt%). To ensure uniform thickness of the film, its precursors were sandwiched between two pieces of glass separated by a 1 mm gap between during the curing process. The films were cut into pieces and were irradiated with a 6 MV X-ray beam to selected doses. The change in optical density was measured using a flatbed scanner and a spectrophotometer.

Results:

The results showed that all film formulations exhibited a linear response with dose and an absorption maximum at ∼ 590 nm. The formulation with 2 wt% LCV was ∼ 30% more sensitive to dose than the formulation with 1 wt% LCV. Both films were very deformable. In addition, the radiochromic response of the film was found to bleach over a short period of time (few weeks) allowing the film to be reused for dose verification measurements.

Conclusion:

Both film formulations displayed excellent sensitivity and linearity to radiation dose and thus can be used for the 2D dosimetry of clinical megavoltage and kilovoltage X-ray beams. In addition, the thickness of the film could easily be increased allowing for their potential use as a deformable bolus material. However, thicker films would need more optimization of the manufacturing procedure to ensure consistent material uniformity and sensitivity are recommended.

Ancillary