MO-FG-BRA-03: A Novel Method for Characterizing Gating Response Time in Radiation Therapy




Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Current film based methods to assess gating response have poor temporal resolution and are highly qualitative. We describe a novel method to precisely measure gating lag times at high temporal resolutions and use it to characterize the temporal response of several gating systems.


A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz (0.4 millisecond (ms) sampling interval) with an analogue-to-digital converter (ADC). The techniques was used on three commercial respiratory gating systems. The ON and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted using a polynomial fit method.


A Varian RPM system with a monoscopic IR camera was measured to have mean beam ON and OFF lag times of 98.2 ms and 89.6 ms, respectively. A Varian RPM system with a stereoscopic IR camera was measured to have mean beam ON and OFF lag times of 86.0 ms and 44.0 ms, respectively. A Calypso magnetic fiducial tracking system was measured to have mean beam ON and OFF lag times of 209.0 ms and 60.0 ms, respectively.


A novel method allowed for quantitative determination of gating timing accuracy for several clinically used gating systems. All gating systems met the 100 ms TG-142 criteria for mean beam OFF times. For beam ON response, the Calypso system exceeded the recommended response time.