MO-FG-CAMPUS-TeP2-04: Optimizing for a Specified Target Coverage Probability




The purpose of this work is to develop a method for inverse planning of radiation therapy margins. When using this method the user specifies a desired target coverage probability and the system optimizes to meet the demand without any explicit specification of margins to handle setup uncertainty.


The method determines which voxels to include in an optimization function promoting target coverage in order to achieve a specified target coverage probability. Voxels are selected in a way that retains the correlation between them: The target is displaced according to the setup errors and the voxels to include are selected as the union of the displaced target regions under the x% best scenarios according to some quality measure. The quality measure could depend on the dose to the considered structure alone or could depend on the dose to multiple structures in order to take into account correlation between structures.


A target coverage function was applied to the CTV of a prostate case with prescription 78 Gy and compared to conventional planning using a DVH function on the PTV. Planning was performed to achieve 90% probability of CTV coverage. The plan optimized using the coverage probability function had P(D98 > 77.95 Gy) = 0.97 for the CTV. The PTV plan using a constraint on minimum DVH 78 Gy at 90% had P(D98 > 77.95) = 0.44 for the CTV. To match the coverage probability optimization, the DVH volume parameter had to be increased to 97% which resulted in 0.5 Gy higher average dose to the rectum.


Optimizing a target coverage probability is an easily used method to find a margin that achieves the desired coverage probability. It can lead to reduced OAR doses at the same coverage probability compared to planning with margins and DVH functions.