• direct material input (DMI);
  • environmental indicators;
  • material flow analysis (MFA);
  • physical economy;
  • sustainability;
  • total material requirement (TMR)


Economy-wide material flow analysis (MFA) and derived indicators have been developed to monitor and assess the metabolic performance of economies, that is, with respect to the internal economic flows and the exchange of materials with the environment and with other economies. Indicators such as direct material input (DMI) and direct material consumption (DMC) measure material use related to either production or consumption. Domestic hidden flows (HF) account for unused domestic extraction, and foreign HF represent the upstream primary resource requirements of the imports. DMI and domestic and foreign HF account for the total material requirement (TMR) of an economy. Subtracting the exports and their HF provides the total material consumption (TMC).

DMI and TMR are used to measure the (de-) coupling of resource use and economic growth, providing the basis for resource efficiency indicators. Accounting for TMR allows detection of shifts from domestic to foreign resource requirements. Net addition to stock (NAS) measures the physical growth of an economy. It indicates the distance from flow equilibrium of inputs and outputs that may be regarded as a necessary condition of a sustainable mature metabolism.

We discuss the extent to which MFA-based indicators can also be used to assess the environmental performance. For that purpose we consider different impacts of material flows, and different scales and perspectives of the analysis, and distinguish between turnover-based indicators of generic environmental pressure and impact-based indicators of specific environmental pressure. Indicators such as TMR and TMC are regarded as generic pressure indicators that may not be used to indicate specific environmental impacts. The TMR of industrial countries is discussed with respect to the question of whether volume and composition may be regarded as unsustainable.