Cement Manufacture and the Environment Part II: Environmental Challenges and Opportunities


U.S. Geological Survey, 983 National Center, Reston, VA 20192, USA, hvanoss@usgs.gov, http:minerals.usgs.govminerals


Construction materials account for a significant proportion of nonfuel materials flows throughout the industrialized world. Hydraulic (chiefly portland) cement, the binding agent in concrete and most mortars, is an important construction material. Portland cement is made primarily from finely ground clinker, a manufactured intermediate product that is composed predominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process typically requires approximately 3 to 6 million Btu (3.2 to 6.3 GJ) of energy and 1.7 tons of raw materials (chiefly limestone) per ton (t) of clinker produced and is accompanied by significant emissions of, in particular, carbon dioxide (CO2), but also nitrogen oxides, sulfur oxides, and particulates. The overall level of CO2 output, about 1 ton/ton clinker, is almost equally contributed by the calcination of limestone and the combustion of fuels and makes the cement industry one of the top two manufacturing industry sources of this greenhouse gas. The enormous demand for cement and the large energy and raw material requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels and provide the industry with significant opportunities to symbiotically utilize large quantities of by-products of other industries.

This article, the second in a two-part series, summarizes some of the environmental challenges and opportunities facing the cement manufacturing industry. In the companion article, the chemistry, technology, raw materials, and energy requirements of cement manufacture were summarized. Because of the size and scope of the U.S. cement industry, the article relies primarily on data and practices from the United States.