• immunology;
  • pigs;
  • interferon;
  • influenza;
  • coronavirus

Abstract: Both innate and adaptative immune responses contribute to the control of infectious diseases, including by limiting the spreading of zoonotic diseases from animal reservoirs to humans. Pigs represent an important animal reservoir for influenza virus infection of human populations and are also naturally infected by coronaviruses, an important group of viruses, which includes the recently emerged severe acute respiratory syndrome (SARS) virus. Studies on both innate and adaptative immune responses of pigs to influenza virus and coronaviruses contribute, therefore, to a better control of these infections in their natural hosts and will be briefly reviewed in this article. Pro-inflammatory cytokines, including type I interferon (IFN), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), were found in lung secretions of influenza virus infected pigs, and correlated with the intensity of clinical signs, whereas prior vaccination against influenza strongly reduced the production of infectious virus and cytokines in the lungs upon challenge, which was associated with clinical protection. An early type I IFN production was also found in coronavirus infected pigs, including at mucosal sites. IFN induction by coronavirus is shown to involve interaction between a viral glycoprotein and a leukocyte subset, likely equivalent to plasmacytoid dendritic cells, present in the mucosae and associated lymphoid tissues. Given the IFN mediated antiviral and immunomodulatory effects, the use of IFN or IFN inducers may prove an efficient strategy for a better control of influenza virus and coronavirus infections in pigs. Because influenza and coronaviruses target mucosal surfaces, adaptative immune responses have to be characterized at mucosal sites. Thus, nasal and pulmonary antibody responses were analyzed in influenza virus infected or vaccinated pigs showing short-lived, but potentially protective local IgA and IgG antibody (Ab) responses. Interestingly, primary influenza virus infection induced long-lived increase of lung CD8+ T cells and local lymphoproliferative responses. Pigs infected by a respiratory coronavirus (PRCV) showed virus-specific IgG Ab-secreting cells in the bronchial lymph nodes, whereas the transmissible gastroenteritis coronavirus (TGEV) induced more IgA Ab-secreting cells in gut tissues, which illustrates the importance of the route of antigen administration for inducing local immune effector mechanisms. Porcine viral infections provide, therefore, valuable models for evaluating the immune parameters that are important for controlling transmission of important viral zoonotic infections.