SEARCH

SEARCH BY CITATION

References

  • Abbott, L. F. (1994). Decoding neuronal firing and modeling neural networks. Quarterly Review of Biophysics 27 (3), 291331.
  • Barnden, J. A. (1994). On using analogy to reconcile connections and symbols. In D. S. Levine & M. Aparicio (Eds.), Neural networks for knowledge representation and inference, pp. 2764. Hillsdale , N.J. : Lawrence Erlbaum Associates.
  • Bechtel, W. (1995). Connectionism. In S. Guttenplan (Ed.), A companion to the philosophy of mind. Cambridge , MA : Blackwell.
  • Bechtel, W., & Richardson, R. C. (1993). Discovering complexity: decomposition and localization as strategies in scientific research. Princeton , NJ , Princeton University Press.
  • Borsellino, A., & Poggio, T. (1973). Convolution and correlation algebras. Kybernetik, 13, 113122.
  • Churchland, P. (1989). A neurocomputational perspective. Cambridge , MA : MIT Press.
  • Churchland, P. M. (1992). A feed-forward network for fast stereo vision with a movable fusion plane. In K. Ford and C. Glymour (Eds.), Android Epistemology: Proceedings of the 2nd International Workshop on Human and Machine Cognition, Cambridge , MA : AAAI Press/MIT Press.
  • Churchland, P. M. (1995). Machine stereopsis: A feedforward network for fast stereo vision with movable fusion plane. In K. Ford, C. Glymour, and P. Hayes (Eds.), Android Epistemology. Menlo Park : MIT Press.
  • Churchland, P. S., & Sejnowski, T. (1992). The computational brain. Cambridge , MA : MIT Press.
  • Clark, A., & Toribio J. (1994). “Doing without representing?” Sythese. 101, 401431.
  • Duncker, K. (1945). On problem solving. Psychological Monographs, 58, no. 270.
  • Eskridge, T. C. (1994). A hybrid model of continuous analogical reasoning. Advances in connectionist and neural computation theory: Analogical connections. Norwood , NJ : Ablex.
  • Falkenhainer, B., K. D. Forbus, & Gentner, D. (1989). The structure-mapping engine: Algorithms and examples. Artificial Intelligence, 41, 163.
  • Feige, U., & Goemans, M. X. (1995). Approximating the value of two prover proof systems, with applications to MAX 2SAT and MAX DICUT. Proceedings of the Third Israel Symposium on Theory of Computing and Systems, Tel Aviv , Israel , p. 182189.
  • Fodor, J., & McLaughlin, B. (1990). Connectionism and the problem of systematicity: Why Smolensky's solution doesn't work. Cognition, 35, 183204.
  • Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 371.
  • Gentner. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7 (2): 155170.
  • Gentner, D., & Forbus, K. (1991). MAC/FAC: A model of similarity-based retrieval. Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society. Hillsdale , NJ : Erlbaum.
  • Gentner, D., & Markman, A. B. (1993). Analogy-watershed or Waterloo? Structural alignment and the development of connectionist models of analogy. In C. L. Giles, S. J. Hanson and J. D. Cowan (Eds.), Advances in neural information processing systems-5. San Mateo , CA : Morgan Kaufmann.
  • Gentner, D., & Toupin, C. (1986). Systematicity and surface similarity in the development of analogy. Cognitive Science, 10, 277300.
  • Gholson, B., Eymard, L. A., Long, D., Morga, D., & Leeming, F. C. (1988). Problem solving, recall, isomorphic transfer, and non-isomorphic transfer among third-grade and fourth-grade children. Cognitive Development, 3, 3753.
  • Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12, 306355.
  • Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 138.
  • Gorman, R. P., & Sejnowski, T. J. (1988). Analysis of hidden units in a layered network trained to classify sonar targets. Neural Networks, 1, 7589.
  • Gray, C., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation-specific columns of the visual cortex. PNAS, 86, 16891702.
  • Halford, G. S., Wilson, W. H., Guo, J., Gayler, J. W., Wiles, G., & Stewart, J. E. M. (1994). Connectionist implications for processing capacity limitations in analogies. Advances in connectionist and neural computation theory, Vol. 2: Analogical connections. Norwood , NJ : Ablex.
  • Hall, R. (1989). Computational approaches to analogical reasoning: A comparative analysis. Artificial Intelligence, 39, 39120.
  • Harnad, S. (1992). Connecting object to symbol in modeling cognition. In A. Clark and R. Lutz (Eds.), Connectionism in Context. London , Springer-Verlag.
  • Hardcastle, V. (1997). Consciousness and the neurobiology of perceptual binding. Seminars in Neuroscience, 17(2), 163170.
  • Hinton, G. E. (1986). Learning distributed representations of concepts. Eighth Conference of the Cognitive Science Society, Lawrence Erlbaum Associates.
  • Hofstadter, D. (1995). A review of mental leaps: analogy in creative thought, 16, 7580.
  • Hofstadter, D. R., & Mitchell, M. (1988). Conceptual slippage and mapping: A report of the Copycat project. Proceedings of the Tenth Annual Conference of the Cognitive Science Society. Hillsdale , New Jersey : Erlbaum.
  • Holyoak, K., & Thagard, P. (1995). Mental leaps: Analogy in creative thought. Cambridge , MA : MIT Press.
  • Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by constraint satisfaction. Cognitive Science, 13, 295355.
  • Hummel, J. E., Burns, B., & Holyoak, K. J. (1994). Analogical mapping by dynamic binding: Preliminary investigations. Advances in connectionist and neural computation theory: Analogical connections. Norwood , NJ : Ablex.
  • Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: a theory of analogical access and mapping. Psychology Review, 104(3), 42766.
  • Keane, M. T. (1995). On order effects in analogical mapping: Predicting human error using IAM. In J. D. Moore, J. F. Lehman (Eds.), Seventeenth Annual Conference of the Cognitive Science Society, Hillsdale , NJ : Erlbaum.
  • Kedar-Cabelli, S. (1988). Analogy-From a unified perspective. In Helman, D. Analogical reasoning. Netherlands : Kluwer.
  • Kiper, D., R. Karl, J. Movshon. (1996). Cortical oscillatory responses do not affect visual segmentation. Vision Research, 36(4), 539544.
  • Kosslyn, S. (1994). Image and brain: The resolution of the imagery debate. Cambridge , MA : MIT Press.
  • Langacker, R. W. (1986). An Introduction to Cognitive Grammar, Cognitive Science, 10, 140.
  • Langacker, R. W. (1987). Foundations of cognitive grammar. Stanford : Stanford University Press.
  • Lazzaro, J., & Mead, C. (1989). A silicon model of auditory localization. Neural Computation, 1, 4757.
  • Le Cun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L. (1990). Handwritten digit recognition with a back-propagation network. In D. Touretzky (Ed.), Advances in neural information processing systems-2. San Mateo : Morgan Kaufmann.
  • Legendre, G., Miyata, Y., & Smolensky, P. (1994). Principles for an integrated connectionist/symbolic theory of higher cognition. Hillsdale , NJ : Lawrence Erlbaum Associates.
  • Eich, Metcalfe J. (1985). Levels of processing, encoding specificity, elaboration and CHARM. Psychological Review, 92(1), 138.
  • Miikkulainen, R., & Dyer, M. G. (1988). Encoding input/output representations in connectionist cognitive systems. In D. Touretsky, G. Hinton and T. Sejnowski (Eds.), Connectionist Models Summer School, San Mateo : Morgan Kaufmann Publishers.
  • Mitchell, M. (1993). Analogy-making as perception. Cambridge , MA : MIT Press.
  • Murdock, B. B. (1987). Serial-order effects in a distributed-memory model. In Gorfein, D. S. and Homan, R. R. (Eds.), Memory and Learning: The Ebbinghaus Centennial Conference. Lawrence Erlbaum Associates.
  • Park, N. S., & Robertson, D. (1995). A localist network architecture for logical inference based on temporal synchrony approach to dynamic variable binding. The IJCAI workshop on Connectionist-Symbolic Integration.
  • Plate, T. A. (1993). Holographic recurrent networks. In C. L. Giles, S. J. Hanson and J. D. Cowan (Eds.), Advances in neural information processing systems-5. San Mateo , Morgan Kaufmann.
  • Plate, T. A. (1994). Distributed representations and nested compositional structure. Ph.D. Thesis, Toronto : University of Toronto.
  • Plate, T. A. (forthcoming). Estimating analogical similarity by vector dot products of Holographically Reduced Representations. Cognitive Science.
  • Qian, N., & Sejnowski, T. J. (1988). Learning to solve random-dot stereograms of dense and transparent surfaces with recurrent backpropagation. In D. Touretsky, G. Hinton and T. Sejnowski (Eds.), Connectionist Models Summer School, San Mateo : Morgan Kaufmann Publishers.
  • Raeburn, P. (1993). Reverse engineering the human brain. Technology Review. November.
  • Reed, S. K., Ernst, G. W., & Banerji, R. (1974). The role of analogy in transfer between similar problem states. Cognitive Psychology, 6, 436440.
  • Rumelhart, D., Smolensky, P., Hinton, G., & McClelland, J. (1986). Schemata and sequential thought processes in PDP models. In D. E. Rumelhart and J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge MA : MIT Press/Bradford Books.
  • Rumelhart, D. E., McClelland, J. L., Eds. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge MA : MIT Press/Bradford Books.
  • Sarle, W. S. (1994). Neural networks and statistical models. 19th Annual SAS Users Group International Conference.
  • Shastri, L., & Ajjanagadde, V. (1993). From simple associations to systematic reasoning: A connectionist representation of rules, variables, and dynamic bindings. Behavioral and Brain Sciences, 16, 41794.
  • Singer, W. (1991). The formation of cooperative cell assemblies in the visual cortex. In J. Kruger (Ed.), Neuronal cooperativity. Berlin : Springer.
  • Skarda, C. A., & Freeman, W. J. (1987). How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences, 10, 161195.
  • Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences, 11(1), 123.
  • Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence, 46, 159217.
  • Smolensky, P. (1995). Computational models of mind. A companion to the philosophy of mind. Cambridge , MA : Blackwell.
  • Thagard, P. (forthcoming). Computing Coherence. Cognitive Models of Science, Minnesota Studies in the Philosophy of Science. Minneapolis : University of Minnesota Press.
  • Thagard, P., Holyoak, K., Nelson, G., & Gochfeld, D. (1990). Analog retrieval by constraint satisfaction. Artificial Intelligence, 46, 259310.
  • Thagard, P., & Verbeurgt, K. (1998). Coherence as constraint satisfaction. Cognitive Science. 22.
  • Tomasello, M., Ed. (1998). The new psychology of language: Cognitive and functional approaches to language structure. London , L. Erlbaum Associates.
  • Ungerer, F., & Schmid, H. (1996). An introduction to cognitive linguistics, Addison-Wesley.
  • Von der Malsburg, C. (1983). How are nervous systems organized? In E. Basar, H. Flohr, H. Haken, and A. J. Mandell (Eds.), Synergetics of the brain. Berlin : Springer.