• Ahumada, A. J. (1996). Perceptual classification images from Vernier acuity masked by noise [Abstract]. Perception, 26(Suppl. 18), 18.
  • Ahumada, A. J. (2002). Classification image weights and internal noise level estimation. Journal of Vision, 2(1), 121131, http:www.journalofvision.org218, doi 10.1167/2.1.8.
  • Ahumada, A. J., & Beard, B. L. (1999). Classification images for detection [Abstract]. Investigative Ophthalmology and Visual Science, 40, 3015.
  • Ahumada, A. J., & Lovell, J. (1971). Stimulus features in signal detection. Journal of the Acoustic Society of America, 49(6), 17511756.
  • Biederman, I., & Kalocsai, P. (1997). Neurocomputational bases of object and face recognition. Philosophical Transactions of the Royal Society London: Biological Sciences, 352, 12031219.
  • Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433436.
  • Calder, A. J., Burton, A. M., Miller, P., Young, A. W., & Akamatsu, S. (2000). A principal component analysis of facial expressions. Vision Research, 41, 11791208.
  • Costen, N. P., Parker, D. M., & Craw, I. (1994). Spatial content and spatial quantisation effects in face recognition. Perception, 23(2), 129146.
  • Dailey, M. N., Cottrell, G. W., Padgett, C., & Adolphs, R. (2002). EMPATH: A neural network that categorizes facial expressions. Journal of Cognitive Neuroscience, 14, 11581173.
  • De Valois, R. L. & De Valois, K. K. (1990). Spatial vision. New York : Oxford University Press.
  • Eckstein, M. P., & Ahumada, A. J. (2002). Classification images: A tool to analyze visual strategies. Journal of Vision, 2(1), 12, http:www.journalofvision.org21introduction.html, doi 10:1167/2.1.1x.
  • Eckstein, M. P., Shimozaki, S. S., & Abbey, C. K. (2002). The footprints of visual attention in the Posner cueing paradigm revealed by classification images. Journal of Vision, 2(1), 2545, http:www.journalofvision.org213, doi 10.1167/2.1.3.
  • Gold, J. M., Murray, R. F., Bennett, P. J., & Sekuler, A. B. (2000). Deriving behavioural receptive fields for visually completed contours. Current Biology, 10, 663666.
  • Gold J. M., Sekuler A. B., Bennett P. J., (2004). Characterizing perceptual learning with external noise. Cognitive Science doi: 10.1016/j.cogsci.2003.10.005.
  • Gosselin, F., & Schyns, P. G. (2001). Bubbles: A technique to reveal the use of information in recognition tasks. Vision Research, 41, 22612271.
  • Gosselin, F., & Schyns, P. G. (2003). Superstitious perceptions reveal properties of memory representations. Psychological Science, 14, 505509.
    Direct Link:
  • Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York : Wiley.
  • Lades, M., Vortbrüggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C., Würtz, R. P., et al. (1993). Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers, 42, 300311.
  • Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge , MA : MIT Press.
  • Murray, R. F., Bennett, P. J., & Sekuler, A. B. (2002). Optimal methods for calculating classification images: Weighted sums. Journal of Vision, 2, 79104, http:www.journalofvision.org216, doi 10.1167/2.1.6.
  • Okada, K., Steffens, J., Maurer, T., Hong, H., Elagin, E., Neven, H., et al. (1998). The Bochum/USC face recognition system and how it fared in the FERET phase III test. In H. Wechsler, P. J. Phillips, V. Bruce, F. F. Soulie, & T. Huang (Eds.), Face recognition: From theory to applications (NATO ASI Series F). Berlin : Springer.
  • Pelli, D. G. (1990). The quantum efficiency of vision. In C. B. Blakemore (Ed.), Vision: Coding and efficiency. Cambridge , UK : Cambridge University Press.
  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437442.
  • Rom, D. M. (1990). A sequentially rejective test procedure based on a modified Bonferroni inequality. Biometrika, 77, 663666.
  • Schwartz, O., Bayer, H., & Pelli, D. (1998). Features, frequencies, and facial expressions [Abstract]. Investigative Ophthalmology and Visual Science, 39, 173.
  • Schyns, P. G., Bonnar, L., & Gosselin, F. (2002). Show me the features! Understanding recognition from the use of visual information. Psychological Science, 13, 402409.
    Direct Link:
  • Sekuler, A. B., Gold, J. M., Bennett, & P. J. (2000). The efficiency of face recognition: Effects of inversion and contrast reversal. Poster presented at the annual Psychonomic Society.
  • Sergent, J. (1989). Microgenesis of face processing. In H. D. Ellis, M. A. Jeeves, F. Newcombe, & A. Young (Eds.), Aspects of face processing. Dortrecht : Martinus Nijhoff.
  • Solomon, J. A., & Morgan, M. J. (1999). Reverse correlation reveals psychophysical receptive fields [Abstract]. Investigative Ophthalmology and Visual Science, 40, 3013.
  • Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. Quarterly Journal of Experimental Psychology, 46A, 225245.
  • Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. The Journal of Cognitive Neuroscience, 3, 7186.
  • Valentin, D., Abdi, H., & O'Toole, A. J. (1994). Categorization and identification of human face images by neural networks: A review of the linear autoassociative and principal component approaches. Journal of Biological Systems, 2, 413429.
  • Watson, A. B. (1998). Multi-category classification: Template models and classification images [Abstract]. Investigative Ophthalmology and Visual Science, 39, 1109.
  • Wiskott, L., Fellous, J.-M., Krüger, N., & von der Malsburg, C. (1997). Face recognition by elastic bunch graph matching. IEEE Transactions of Pattern Analysis and Machine Intelligence, 19, 775779.