SEARCH

SEARCH BY CITATION

REFERENCES

  • Beckmann, A. and Diebels, S. 1994 Effects of the horizontal component of the Earth's rotation on wave propagation on an f-plane. Geophys. Astrophys. Fluid Dyn., 76, 95 119
  • Charney, J. G. and Phillips, N. A. 1953 Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J. Meteorol., 10, 71 99
  • Colin de Verdière, A. and Schopp, R. 1994 Flows in a rotating spherical shell: The equatorial case. J. Fluid Mech., 276, 233 260
  • Cullen, M. J. P. 1993 The unified forecast/climate model. Meteorol. Mag., 122, 81 94
  • Cullen, M. J. P., Davies, T., Mawson, M. H., James, J. A. and Coulter, S. 1997 ‘An overview of numerical methods for the next generation UK NWP and climate model’. Pp. 425 444 in Numerical methods in atmosphere and ocean modelling. The André Robert memorial volume. Eds. C. Lin, R. Laprise and H. Ritchie. Canadian Meteorological and Oceanographic Society, Ottowa, Canada
  • Daley, R. 1988 The normal modes of the spherical non-hydrostatic equations with applications to the filtering of acoustic modes. Tellus, 40A, 96 106
  • Draghici, I. 1987 Non-hydrostatic Coriolis effects in an isentropic coordinate frame. Meteorol. Hydrol., 19, 13 27
  • Garwood, R. W., Gallacher, C. G. and Muller, P. 1985 Wind direction and equilibrium mixed layer depth: General theory. J. Phys. Oceanogr., 15, 1325 1331
  • Kasahara, A. and Qian, J.-H. 2000 Normal modes of a global nonhydrostatic atmospheric model. Mon. Weather Rev., 128, 3357 3375
  • Longuet-Higgins, M. S. 1968 The eigenfunctions of Laplace's tidal equations over a sphere. Philos. Trans. R. Soc. London, A262, 511 607
  • Marshall, J., Hill, C., Perelman, L. and Adcroft, A. 1997 Hydrostatic, quasi-hydrostatic, and non-hydrostatic ocean modeling. J. Geophys. Res., 102, 5733 5752
  • Mason, P. J. and Thomson, D. J. 1987 Large-eddy simulations of the neutral-static-stability planetary boundary layer. Q. J. R. Meteorol. Soc., 113, 413 443
  • Newton, C. W. 1971 Global angular momentum balance: Earth torques and atmospheric fluxes. J. Atmos. Sci., 28, 1329 1341
  • Phillips, N. A. 1966 The equations of motion for a shallow rotating atmosphere and the ‘traditional approximation’. J. Atmos. Sci., 23, 626 628
  • 1968 Reply to ‘Comments on Phillips's proposed simplification of the equations of motion for a shallow rotating atmosphere’ by G. Veronis. J. Atmos. Sci., 25, 1155 1157
  • 1973 ‘Principles of large-scale numerical weather prediction’. Pp. 1 93 in Dynamic meteorology. Ed. P. Morel. Reidel
  • 1990 ‘Dispersion processes in large-scale weather prediction’. World Meteorological Organization Report No. 700
  • Staniforth, A. N., Williams, R. T. and Neta, B. 1993 Influence of linear depth variation on Poincaré, Kelvin, and Rossby waves. J. Atmos. Sci., 50, 929 940
  • Thuburn, J., Wood, N. and Staniforth, A. N. 2002 Normal modes of deep atmospheres. II: fF-plane geometry. Q. J. R. Meteorol. Soc., 128, 1793 1806
  • White, A. A. and Bromley, R. A. 1995 Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Q. J. R. Meteorol. Soc., 121, 399 418