• Geostationary satellites;
  • Numerical weather prediction;
  • Water vapour radiances


The direct assimilation of water vapour (WV) clear-sky radiances (CSRs) from geostationary satellites within the ECMWF four-dimensional variational assimilation (4D-Var) became operational on 9 April 2002 with the assimilation of radiances from Meteosat-7. To extend the coverage provided by geostationary radiances, the derivation of a similar CSR product from the Geostationary Operational Environmental Satellites GOES-W and GOES-E was initiated and since 14 January 2003 these data have been operationally assimilated as well. This paper discusses results from the pre-operational impact experiments using Meteosat-7 and the subsequent operational implementation of the WV radiance assimilation. The pre-operational data monitoring of the CSRs shows contamination of certain time slots caused by intruding solar stray light and a certain degree of cloud influence present in the CSR. Data quality control is introduced to exclude affected data. When assimilated, the Meteosat WV CSRs correct the upper-tropospheric humidity field in areas of known model problems. While the analysis draws well to Meteosat data, the fit to other conventional observations does not degrade, and the fit to other satellite observations is noticeably improved. This is visible in statistics for the assimilated HIRS-12 as well as for passive Advanced Microwave Sounding Unit B (AMSUB) radiances, both in the pre-operational experiments and in the operational assimilation cycle. The impact on forecast quality is slightly positive to neutral for different areas of the globe. In some experiments a positive impact on upper-level wind fields (around 200 hPa) is seen, especially in the tropics. A relatively large sensitivity is noted of the mean increments and also forecast scores to the bias correction. Copyright © 2004 Royal Meteorological Society