• Bartholomew-Biggs, M. C., Brown, S., Christianson, B. and Dixon, L. 2000 Automatic differentiation of algorithms. J. Comput. Appl. Math., 124, 171190
  • Chao, W. C. and Chang, L.-P. 1992 Development of a four-dimensional variational analysis system using the adjoint method at GLA. Part I: Dynamics. Mon. Weather Rev., 120, 16611673
  • Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M. and Staniforth, A. 1998 The operational CMC-MRB Global Environmental Multiscale (GEM) Model. Part I: Design considerations and formulation. Mon. Weather Rev., 126, 13731395
  • Courtier, P., Thepaut, J.-N. and Hollingsworth, A. 1994 A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc., 120, 13671387
  • Cullen, M. J. P., Davies, T., Mawson M. H., James, J. A., Coulter, S. C. and Malcolm, A. 1997 ‘An overview of numerical methods for the next generation U.K. NWP and climate model’. Pp. 425444 in Numerical methods in atmospheric and oceanic modelling, Eds. C. A. Lin, R. Laprise and H. Ritchie. Canadian Meteorological and Oceanographic Society, 112–150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
  • Davies, T., Cullen, M. J. P., Mawson, M. H. and Malcolm, A. J. 1998 ‘A new dynamical formulation for the UK Meteorological Office Unified Model’. Pp. 202225 in Proceedings of the ECMWF seminar on recent developments in numerical methods for atmospheric modelling, September 1998. European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, Berkshire RG2 9AX, UK
  • Errico, R. M. and Raeder, K. D. 1999 An examination of the accuracy of the linearization of a mesoscale model with moist physics. Q. J. R. Meteorol. Soc., 125, 169195
  • Ghil, M. and Malanotte-Rizzoli, P. 1991 Data assimilation in meteorology and oceanography. Adv. Geophys., 33, 141266
  • Giering, R. and Kaminski, T. 1998 Recipes for adjoint code construction. ACM Trans. Math. Software, 24, 437474
  • Giles, M. B. and Pierce, N. A. 2000 An introduction to the adjoint approach to design. Flow, Turbulence and Combustion, 65, 393415
  • Houghton, D. D. and Kasahara, A. 1968 Nonlinear shallow fluid flow over an isolated ridge. Comm. Pure Appl. Math., 21, 123
  • Lawless, A. S. 1996 ‘A perturbation forecast model and its adjoint’. Pp. 128129 in Preprints of the 11th conference on numerical weather prediction. American Meteorological Society, 45 Beacon Street, Boston MA02108-3693, USA
  • 2001 ‘Development of linear models for data assimilation in numerical weather prediction’. PhD thesis, Department of Mathematics, University of Reading, UK
  • Li, Y., Navon, I. M., Courtier, P. and Gauthier, P. 1993 Variational data assimilation with a semi-Lagrangian semi-implicit global shallow-water equation model and its adjoint. Mon. Weather Rev., 121, 17591769
  • Li, Y., Navon, I. M., Yang, W., Zou, X., Bates, J. R., Moorthi, S. and Higgins, R. W. 1994 Four-dimensional variational data assimilation experiments with a multilevel semi-Lagrangian semi-implicit general circulation model. Mon. Weather Rev., 122, 966983
  • Lorenc, A. C, Ballard, S. P., Bell, R. S., Ingleby, N. B., Andrews, P. L. F., Barker, D. M., Bray, J. R., Clayton, A. M., Dalby, T., Li, D., Payne, T. J. and Saunders, F. W. 2000 The Met. Office global 3-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc., 126, 29913012
  • Polavarapu, S. and Tanguay, M. 1998 Linearizing iterative processes for four-dimensional data assimilation schemes. Q. J. R. Meteorol. Soc., 124, 17151742
  • Polavarapu, S., Tanguay, M., Menard, R. and Staniforth, A. 1996 The tangent linear model for semi-Lagrangian schemes: linearizing the process of interpolation. Tellus, 48A, 7495
  • Pudykiewicz, J., Benoit, R. and Staniforth, A. 1985 Preliminary results from a partial LRTAP model based on an existing meteorological forecast model. Atmos. Ocean, 23, 267303
  • Rabier, F. and Courtier, P. 1992 Four-dimensional assimilation in the presence of baroclinic instability. Q. J. R. Meteorol. Soc., 118, 649672
  • Rivest, C., Staniforth, A. and Robert, A. 1994 Spurious resonant response of semi-Lagrangian discretizations to orographic forcing: diagnosis and solution. Mon. Weather Rev., 122, 366376
  • Rostaing, N., Dalmas, S. and Galligo, A. 1993 Automatic differentiation in Odyssée. Tellus, 45A, 558568
  • Sirkes, Z. and Tziperman, E. 1997 Finite difference of adjoint or adjoint of finite difference? Mon. Weather Rev., 125, 33733378
  • Tanguay M., Polavarapu S. and Gauthier P. 1997 Temporal accumulation of first-order linearization error for semi-Lagrangian passive advection. Mon. Weather Rev., 125, 12961311
  • Temperton, C and Staniforth A. 1987 An efficient two-time-level semi-Lagrangian semi-implicit integration scheme. Q. J. R. Meteorol. Soc., 113, 10251039
  • Thepaut, J.-N. and Courtier, P. 1991 Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model. Q. J. R. Meteorol. Soc., 117, 12251254
  • Vukićević, T. and Bao, J.-W. 1998 The effect of linearization errors on 4DVAR data assimilation. Mon. Weather Rev., 126, 16951706