SEARCH

SEARCH BY CITATION

REFERENCES

  • Andersson, E. and Fisher, M. 1999 ‘Background errors for observed quantities and their propagation in time’. Pp. 8190 in Proceedings of the ECMWF workshop on the diagnosis of data assimilation systems, Reading, 1–4 November 1998. ECMWF, Shinfield, Reading, UK
  • Andersson, E., Fisher, M., Munro, R. and McNally, A. 2000 Diagnosis of background errors for radiances and other observable quantities in a variational data assimilation scheme, and the explanation of a case of poor convergence. Q. J. R. Meteorol. Soc., 126, 14551472
  • Bay, Z., Fahey, M. and Golub, G. H. 1996 Some large scale matrix computation problems. J. Comput. Appl. Math., 74, 2189
  • Bormann, N., Saarinen, S., Kelly, G. and Thépaut, J.-N. 2003 The spatial structure of observation errors in atmospheric motion vectors from geostationary satellite data. Mon. Weather Rev., 131, 706718
  • Bouttier, F., and Kelly, G. 2001 Observing system experiments in the ECMWF 4D-Var data assimilation system. Q. J. R. Meteorol. Soc., 127, 14691488
  • Courtier, P., Andersson, E., Heckley, W., Pailleux, J., Vasiljevic, D., Hamrud, D. M., Hollingsworth, A., Rabier, F. and Fisher, M. 1998 The ECMWF implementation of three-dimensional variational assimilation (3D-Var). Part I: Formulation. Q. J. R. Meteorol. Soc., 124, 17831807
  • Craven, P. and Wahba, G. 1979 Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math., 31, 377403
  • Fisher, M. 1996 ‘The specification of background error variances in the ECMWF variational analysis system’. Pp. 645652 in Proceedings of the ECMWF workshop on non-linear aspects of data assimilation, Reading, 9–11 September 1996. ECMWF, Shinfield, Reading, UK
  • 2003 ‘Estimation of entropy reduction and degrees of freedom for signal for large variational analysis systems’. P. 18 in ECMWF Technical Memorandum No. 397. ECMWF, Shinfield, Reading, UK
  • Fisher, M. and Andersson, E. 2001 ‘Developments in 4D-Var and Kalman filtering’. P. 36 in ECMWF Technical Memorandum No. 347. ECMWF, Shinfield, Reading, UK
  • Fisher, M. and Courtier, P. 1995 ‘Estimating the covariance matrices of analysis and forecast error in variational data assimilation’. P. 26 in ECMWF Technical Memorandum No. 220. ECMWF, Shinfield, Reading, UK
  • Fourrié, N. and Thépaut, J.-N. 2003 Evaluation of the AIRS near-real-time channel selection for application to numerical weather prediction. Q. J. R. Meteorol. Soc., 129, 24252439
  • Hoaglin, D. C. and Welsch, R. E. 1978 The hat matrix in regression and ANOVA. Am. Stat., 32, 1722and Corrigenda 32, 146
  • Hoaglin, D. C., Mosteller, F. and Tukey, J. W. 1982 Understanding robust and exploratory data analysis. Seriesin probability and statistics. Wiley, New York, USA
  • Lorenc, A. 1986 Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc., 112, 11771194
  • Purser, R. J. and Huang, H.-L. 1993 Estimating effective data density in a satellite retrieval or an objective analysis. J. Appl. Meteorol., 32, 10921107
  • Rabier, F. and Courtier, P. 1992 Four-dimensional assimilation in the presence of baroclinic instability. Q. J. R. Meteorol. Soc., 118, 649672
  • Rabier, F., Järvinen, H., Klinker, E., Mahfouf, J. F. and Simmons, A. 2000 The ECMWF operational implementation of four-dimensional variational assimilation. Part I: Experimental results with simplified physics. Q. J. R. Meteorol. Soc., 126, 11431170
  • Rabier, F., Fourrié, N., Chafaï, D. and Prunet, P. 2002 Channel selection methods for infrared atmospheric sounding interferometer radiances. Q. J. R. Meteorol. Soc., 128, 10111027
  • Shen, X., Huang, H. and Cressie, N. 2002 Nonparametric hypothesis testing for a spatial signal. J. Am. Stat. Ass., 97, 11221140
  • Talagrand, O. 1997 Assimilation of observations: An introduction. J. Meteorol. Soc. Jpn, 75, 191209
  • Thépaut, J. N. and Andersson, E. 2003 ‘Assimilation of high-resolution satellite data’. Pp. 612 in ECMWF Newsletter No. 97. ECMWF, Shinfield, Reading, UK
  • Thépaut, J. N., Hoffman, R. N. and Courtier, P. 1993 Interactions of dynamics and observations in a four-dimensional variational assimilation. Mon. Weather Rev., 121, 33933414
  • Thépaut, J. N., Courtier, P., Belaud, G. and Lemaître, G. 1996 Dynamical structure functions in four-dimensional variational assimilation: A case-study. Q. J. R. Meteorol. Soc., 122, 535561
  • Tukey, J. W. 1972 Data analysis, computational and mathematics. Q. Appl. Math., 30, 5165
  • Velleman, P. F. and Welsch, R. E. 1981 Efficient computing of regression diagnostics. Am. Stat., 35, 234242
  • Wahba, G. 1990 Spline models for observational data. CBMS-NSF, Regional conference series in applied mathematics, volume 59. Society for Industrial and Applied Mathematics
  • Wahba, G., Johnson, D. R., Gao, F. and Gong, J. 1995 Adaptive tuning of numerical weather prediction models: Randomized GCV in three- and four-dimensional data assimilation. Mon. Weather Rev., 123, 33583369
  • WMO 1996 Guide to meteorological instruments and methods of observation. Sixth edition. WMO-No. 8. World Meteorological Organization, Geneva, Switzerland
  • Ye, J. 1998 On measuring and correcting the effect of data mining and model selection. J. Am. Stat. Ass., 93, 120131