SEARCH

SEARCH BY CITATION

REFERENCES

  • Arakawa, A. and Konor, C. S. 1996 Vertical differencing of the primitive equations based on the Charney–Phillips grid in hybrid σ–p vertical coordinates. Mon. Weather Rev., 124, 511528
  • Arakawa, A. and Lamb, V. R. 1977 Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys., 17, 173265
  • Barkstorm, B., Harrison, E., Smith, G., Green, R., Kibler, J. and Cess, R. 1989 Earth Radiation Budget Experiment (ERBE) 1985 archival and April 1985 results. Bull. Am. Meteorol. Soc., 70, 12541262
  • Bates, J. R., Moorthi, S. and Higgins, R. W. 1993 A global multilevel atmospheric model using a vector semi-Lagrangian finite-difference scheme. Part 1: Adiabatic formulation. Mon. Weather Rev., 121, 244263
  • Bermejo, R. and Staniforth, A. 1992 The conversion of semi-Lagrangian advection schemes to quasimonotone schemes. Mon. Weather Rev., 120, 26222632
  • Clark, P. A., Browning, K. A. and Wang, C. 2005 The sting at the end of the tail: Model diagnostics of fine scale 3D structure of the cloud head. Q. J. R. Meteorol. Soc. (in press)
  • Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M. and Staniforth, A. 1998 The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Weather Rev., 126, 13731395
  • Cullen, M. J. P. 1989 Implicit finite difference methods for modelling discontinuous atmospheric flows. J. Comput. Phys., 81, 319348
  • 1990 A test of a semi-implicit integration technique for a fully compressible non-hydrostatic model. Q. J. R. Meteorol. Soc., 116, 12531258
  • 1999 ‘The use of dynamical knowledge of the atmosphere to improve NWP models’. Pp. 418441 in ECMWF Seminar Proceedings: Recent developments in numerical methods for atmospheric modelling, ECMWF, Reading, UK
  • 2001 Alternative implementations of the semi-Lagrangian semiimplicit schemes in the ECMWF model. Q. J. R. Meteorol. Soc., 127, 27872802
  • Cullen, M. J. P. and Davies, T. 1991 A conservative split-explicit integration scheme with fourth-order horizontal advection. Q. J. R. Meteorol. Soc., 117, 9931002
  • Cullen, M. J. P., Norbury, J., Purser, R. J. and Shutts, G. J. 1987 Modelling the quasi-equilibrium dynamics of the atmosphere. Q. J. R. Meteorol. Soc., 113, 735757
  • Cullen, M. J. P., Davies, T., Mawson, M. H., James, J. A., Coulter, S. C. and Malcolm, A. 1997 ‘An overview of numerical methods for the next generation UK NWP and climate model’. Pp. 425444 in Numerical Methods in Atmosphere and Ocean Modelling, The André Robert memorial volume, Eds. C. Lin, R. Laprise and H. Ritchie. Canadian Meteorological and Oceanographical Society, Ottawa, Canada
  • Davies, T., Staniforth, A., Wood, N. and Thuburn, J. 2003 Validity of anelastic and other equation sets as inferred from normal-mode analysis. Q. J. R. Meteorol. Soc., 129, 27612775
  • Eisenstat, S. C., Elman, H. C. and Schultz, M. H. 1983 Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal., 20, 345357
  • Fureby, C. and Grinstein, F. F. 2002 Large eddy simulation of high-Reynolds-number free and wall-bounded flows. J. Comput. Phys., 181, 6897
  • Gates, W. L. 1992 AMIP: the Atmospheric Model Intercomparison Project. Bull. Am. Meteorol. Soc., 73, 19621970
  • Gates, W. L., Boyle, J. S., Covey, C., Dease, C. G., Doutriaux, C. M., Drach, R. S., Fiorino, M., Gleckler, P. J., Hnilo, J. J., Marlais, S. M., Phillips, T. J., Potter, G. L., Santer, B. D., Sperber, K. R., Taylor, K. E. and Williams, D. N. 1999 An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Am. Meteorol. Soc., 80, 2955
  • Gibson, J., Kållberg, P., Uppala, S., Hernandez, A., Nomura, A. and Serrano, E. 1997 ERA-15 description. ECMWF Re-analysis Project Report Series, 1, 174
  • Gill, A. E. 1982 Atmosphere–ocean dynamics, 1st edn. Academic Press, London
  • Golding, B. W. 1992 An efficient non-hydrostatic forecast model. Meteorol. Atmos. Phys., 50, 89103
  • Held, I. M. and Suarez, M. J. 1994 A proposal for the intercomparison of dynamical cores of atmospheric general circulation models. Bull. Am. Meteorol. Soc., 75, 18251830
  • Héreil, P. and Laprise, R. 1996 Sensitivity of internal gravity waves solutions to time step of a semi-implicit semi-Lagrangian nonhydrostatic model. Mon. Weather Rev., 124, 972999
  • Kálnay de Rivas, E. 1972 On the use of nonuniform grids in finite-difference equations. J. Comput. Phys., 10, 202210
  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R. and Joseph, D. 1996 The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77, 437471
  • Lean, H. W. and Clark, P. A. 2003 The effects of changing resolution on mesoscale modelling of line convection and slantwise circulation in FASTEX IOP16. Q. J. R. Meteorol. Soc., 129, 22552278
  • Lions, J.-L., Teman, R. and Wang, S. 1992a New formulations of the primitive equations of atmosphere and applications. Nonlinearity, 5, 237288
  • 1992b On the equations of the large-scale ocean. Nonlinearity, 5, 10071053
  • Lorenc, A. C., Ballard, S. P., Bell, R. S., Ingleby, N. B., Andrews, P. L. F., Barker, D. M., Bray, J. R., Clayton, A. M., Dalby, T., Li, D., Payne, T. J. and Saunders, F. W. 2000 The Met. Office global three-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc., 126, 29913012
  • Malcolm, A. J. 1996 ‘Evaluation of the proposed new Unified Model scheme versus the current Unified Model scheme on the shallow water equations’. Met Office FR Technical Note No. 180
  • McDonald, A. and Bates, J. R. 1989 Semi-Lagrangian integration of a gridpoint shallow water model on the sphere. Mon. Weather Rev., 117, 130137
  • Ólafsson, H. and Bougeault, P. 1996 Nonlinear flow past an elliptic mountain ridge. J. Atmos. Sci., 53, 24652489
  • Oliger, J. and Sundström, A. 1978 Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Math., 35, 419446
  • Phillips, N. A. 1957 A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14, 184185
  • Pinty, J.-P., Benoit, R., Richard, E. and Laprise, R. 1995 Simple tests of a semi-implicit semi-Lagrangian model on 2D mountain wave problems. Mon. Weather Rev., 123, 30423058
  • Priestley, A. 1993 A quasi-conservative version of the semi-Lagrangian advection scheme. Mon. Weather Rev., 121, 621629
  • Qian, J.-H., Semazzi, F. H. M. and Scroggs, J. S. 1998 A global nonhydrostatic semi-Lagrangian atmospheric model with orography. Mon. Weather Rev., 126, 747771
  • Ritchie, H., Temperton, C., Simmons, A., Hortal, M., Davies, T., Dent, D. and Hamrud, M. 1995 Implementation of the semi-Lagrangian method in a highresolution version of the ECMWF forecast model. Mon. Weather Rev., 123, 489514
  • Robert, A. 1969 ‘The integration of a spectral model of the atmosphere by the implicit method’. Pp. VII-19VII-24 in Proceedings WMO/IUGG Symposium on Numerical Weather Prediction. Japan Meteorol. Agency
  • 1981 A stable numerical integration scheme for the primitive meteorological equations. Atmos.–Ocean, 19, 3546
  • Simmons, A. J. and Burridge, D. M. 1981 An energy and angular-momentum conserving vertical finitedifference scheme and hybrid vertical coordinates. Mon. Weather Rev., 109, 758766
  • Skamarock, W. C., Smolarkiewicz, P. K. and Klemp, J. B. 1997 Preconditioned conjugate-residual solvers for Helmholtz equations in nonhydrostatic models. Mon. Weather Rev., 125, 587599
  • Smith, R. B. 1980 Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32, 348364
  • Smolarkiewicz, P. K. and Margolin, L. G. 1994 ‘Variational elliptic solver for atmospheric applications’. Technical Report LA-12712-MS, Los Alamos, USA
  • Staniforth, A. and Côté, J. 1991 Semi-Lagrangian integration schemes for atmospheric models—a review. Mon. Weather Rev., 119, 22062223
  • Staniforth, A., White, A., Wood, N., Thuburn, J., Zerroukat, M., Cordero, E. and Davies, T. 2004 ‘The Joy of U.M. 6.0—model formulation’. Unified Model Documentation Paper No. 15. Available online athttp://www.metoffice.com/research/nwp/publications/papers/unified model/index.html
  • Tanguay, M., Robert, A. and Laprise, R. 1990 A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Weather Rev., 118, 19701980
  • Tapp, M. C. and White, P. W. 1976 A non-hydrostatic mesoscale model. Q. J. R. Meteorol. Soc., 102, 277296
  • Taylor, K. E. 2001 Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192
  • Temperton, C., Hortal, M. and Simmons, A. 2001 A two-time-level semi-Lagrangian global spectral model. Q. J. R. Meteorol. Soc., 127, 111127
  • Thuburn, J., Wood, N. and Staniforth, A. 2002 Normal modes of deep atmospheres. I: Spherical geometry. Q. J. R. Meteorol. Soc., 128, 17711792
  • White, A. A. and Bromley, R. A. 1995 Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Q. J. R. Meteorol. Soc., 121, 399418
  • White, A. A., Hoskins, B. J., Roulstone, I. and Staniforth, A. 2005 Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and nonhydrostatic. Q. J. R. Meteorol. Soc. (in press)
  • Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R. and Swarztrauber, P. N. 1992 A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211224
  • Wood, N. and Staniforth, A. 2003 The deep-atmosphere Euler equations with a mass-based vertical coordinate. Q. J. R. Meteorol. Soc., 129, 12891300
  • Xie, P. and Arkin, P. A. 1997 Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc., 78, 25392558
  • Yeh, K.-S., Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M. and Staniforth, A. 2002 The CMC–MRB Global Environmental Multiscale (GEM) model. Part III: Nonhydrostatic formulation. Mon. Weather Rev., 130, 339356