• Bai, Z., Fahey, M. and Golub, G. H. 1996 Some large-scale matrix computation problems. J. Comput. Appl. Math., 74, 7189
  • Barry, R. P. and Pace, R. K. 1999 Monte Carlo estimates of the log-determinant of large sparse matrices. Linear Algebra Appl., 289, 4154
  • Bennett, A. F., Leslie, L. M., Hagelberg, C. R. and Powers, P. E. 1993 Tropical cyclone prediction using a barotropic model initialized by a generalized inverse method. Mon. Weather Rev., 121, 17141729
  • Bormann, N., Saarinen, S., Kelly, G. and Thépault, J.-N. 2003 The spatial structure of observation errors in atmospheric motion vectors from geostationary satellite data. Mon. Weather Rev., 131, 706718
  • Cardinali, C., Pezzuli, S. and Andersson, E. 2004 Influence matrix diagnostic of a data assimilation system. Q. J. R. Meteorol. Soc., 130, 27672786
  • Chapnik, B., Desroziers, G., Rabier, F. and Talagrand, O. 2004 Properties and first application of an error-statistics tuning method in variational assimilation. Q. J. R. Meteorol. Soc., 130, 22532275
  • Courtier, P., Freydier, C., Geleyn, J.-F., Rabier, F. and Rochas, M. 1991 ‘The ARPEGE project at Météo-France’. Pp. 193231 in Proceedings of the ECMWF Workshop on Numerical methods in atmospheric models, ECMWF, Reading, UK
  • Courtier, P., Thépaut, J.-N. and Hollingsworth, A. 1994 A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc., 120, 13671387
  • Dee, D. and da Silva, A. M. 1998 Data assimilation in the presence of forecast bias. Q. J. R. Meteorol. Soc., 124, 2692951999 Maximum-likelihood estimation of forecast and observation error covariance parameters. Part 1: Methodology. Mon. Weather Rev., 127, 18221834
  • Desroziers, G. and Ivanov, S. 2001 Diagnosis and adaptive tuning of information error parameters in a variational assimilation. Q. J. R. Meteorol. Soc., 127, 14331452
  • Fisher, M. 2003 ‘Estimation of entropy reduction and degrees of freedom for signal for large variational analysis systems’. Technical Memorandum 397, ECMWF, Reading, UK
  • Fisher, M. and Courtier, P. 1995 ‘Estimating the covariance matrices of analysis and forecast error in variational data assimilation’. Technical Memorandum 220, ECMWF, Reading, UK
  • Girard, D. 1987 ‘A fast Monte Carlo cross-validation procedure for large least-squares problems with noisy data’. Technical Report 687-M, IMAG, Grenoble, France
  • Hollingsworth, A. and Lönnberg, P. 1986 The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38, 111136
  • Hutchinson, M. F. 1989 A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat. Simulat., 18, 10591076
  • Ide, K., Courtier, P., Ghil, M. and Lorenc, A. C. 1997 Unified notation for data assimilation: operational, sequential and variational. J. Meteorol. Soc. Japan, 75, 181189
  • Rabier, F., Fourrié, N., Chafaï, D. and Prunet, P. 2002 Channel selection method for infrared atmospheric sounding interferometer radiances. Q. J. R. Meteorol. Soc., 128, 10111032
  • Rodgers, C. D. 1996 Information content and optimization of high spectral resolution measurements. Proc. SPIE, 2830, 136147
  • Sadiki, W. and Fischer, C. 2005 A posteriori validation of real data assimilation system. Tellus, 57A, 2134
  • Talagrand, O. 1999 ‘A posteriori verification of analysis and assimilation algorithms’. Pp. 1728 in Proceedings of Workshop on Diagnosis of Data Assimilation Systems, 2–4 Nov 1998, ECMWF, Reading, UK2004 ‘Objective validation and evaluation of data assimilation’. Pp. 287299 in Proceedings of Workshop on Diagnosis of Data Assimilation Systems, ECMWF, Reading, UK
  • Tarantola, A. 1987 Inverse problem theory: Methods for data fitting and model parameter estimation. Elsevier, Amsterdam, the Netherlands
  • Veersé, F. and Thépault, J.-N. 1998 Multiple-truncation incremental approach for four-dimensional variational data assimilation. Q. J. R. Meteorol. Soc., 124, 18891908
  • Wahba, G., Johnson, D. R., Gao, F. and Gong, J. 1995 Adaptative tuning of numerical weather prediction models: randomized GCV in three- and four-dimensional data assimilation. Mon. Weather Rev., 123, 33583369